Confronting the Environmental Kuznets Curve

Susmita Dasgupta, Benoit Laplante, Hua Wang and David Wheeler

The environmental Kuznets curve posits an inverted-U relationship between pollution and economic development. Kuznets’s name was apparently attached to the curve by Grossman and Krueger (1993), who noted its resemblance to Kuznets’s inverted-U relationship between income inequality and development. In the first stage of industrialization, pollution in the environmental Kuznets curve world grows rapidly because people are more interested in jobs and income than clean air and water, communities are too poor to pay for abatement, and environmental regulation is correspondingly weak. The balance shifts as income rises. Leading industrial sectors become cleaner, people value the environment more highly, and regulatory institutions become more effective. Along the curve, pollution levels off in the middle-income range and then falls toward pre-industrial levels in wealthy societies.

The environmental Kuznets curve model has elicited conflicting reactions from researchers and policymakers. Applied econometricians have generally accepted the basic tenets of the model and focused on measuring its parameters. Their regressions, typically fitted to cross-sectional observations across countries or regions, suggest that air and water pollution increase with development until per capita income reaches a range of $5000 to $8000. When income rises beyond that level, pollution starts to decline, as shown in the “conventional EKC” line in Figure 1. In developing countries, some policymakers have interpreted such results as conveying a message about priorities: Grow first, then clean up.

Numerous critics have challenged the conventional environmental Kuznets curve, both as a representation of what actually happens in the development process and as a policy prescription. Some pessimistic critics argue that cross-sectional evidence for the environmental Kuznets curve is nothing more than a
snapshot of a dynamic process. Over time, they claim, the curve will rise to a horizontal line at maximum existing pollution levels, as globalization promotes a “race to the bottom” in environmental standards, as shown in Figure 1. Other pessimists hold that, even if certain pollutants are reduced as income increases, industrial society continuously creates new, unregulated and potentially toxic pollutants. In their view, the overall environmental risks from these new pollutants may continue to grow even if some sources of pollution are reduced, as shown by the “new toxics” line in Figure 1. Although both pessimistic schools make plausible claims, neither has bolstered them with much empirical research.

In contrast, recent empirical work has fostered an optimistic critique of the conventional environmental Kuznets curve. The new results suggest that the level of the curve is actually dropping and shifting to the left, as growth generates less pollution in the early stages of industrialization and pollution begins falling at lower income levels, as shown by the “revised EKC” in Figure 1. The stakes in the environmental Kuznets curve debate are high. Per capita GDP in 1998 (in purchasing power parity dollars) was $1440 in the nations of sub-Saharan Africa, $2060 in India, $2407 in Indonesia, and $3051 in China (World Bank, 2000). Since these societies are nowhere near the income range associated with maximum pollution on the conventional environmental Kuznets curve, a literal interpretation of the curve would imply substantial increases in pollution during the next few decades. Moreover, empirical research suggests that pollution costs are already quite high in these countries. For example, recent World Bank estimates of mortality and morbidity from urban air pollution in India and China suggest annual losses in the range of 2–3 percent of GDP (Bolt, Hamilton, Pandey and Wheeler, 2001).

The stakes are not trivial for industrial societies, either. Those who believe in the “race to the bottom” model repeatedly advocate trade and investment restric-
tions that will eliminate the putative cost advantage of “pollution havens” in the developing world. If their assessment of the situation is correct, then industrial society faces two unpalatable options: Protect environmental gains by moving back toward autarky, but reducing global income in the process, or accept much higher global pollution under unrestrained globalization. Moreover, industrialized countries surely must consider the daunting possibility that they are not actually making progress against pollution as their incomes rise, but instead are reducing only a few measured and well-known pollutants while facing new and potentially greater environmental concerns.

In this paper, we review the arguments and the evidence on the position, shape and mutability of the environmental Kuznets curve. We ultimately side with the optimists—but with some reservations.

Theory and Measurement of the Relationship between Economic Development and Environmental Quality

Numerous theoretical and empirical papers have considered the broad relationship between economic development and environmental quality. The focus of the theoretical papers has mainly been to derive transition paths for pollution, abatement effort and development under alternative assumptions about social welfare functions, pollution damage, the cost of abatement, and the productivity of capital. This theoretical work has shown that an environmental Kuznets curve can result if a few plausible conditions are satisfied as income increases in a society: specifically, the marginal utility of consumption is constant or falling; the disutility of pollution is rising; the marginal damage of pollution is rising; and the marginal cost of abating pollution is rising. Most theoretical models implicitly assume the existence of public agencies that regulate pollution with full information about the benefits and costs of pollution control. In addition, they assume that the pollution externality is local, not cross-border. In the latter case, there would be little local incentive to internalize the externality.

López (1994) uses a fairly general theoretical model to show that if producers pay the social marginal cost of pollution, then the relationship between emissions and income depends on the properties of technology and preferences. If preferences are homothetic, so that percentage increases in income lead to identical percentage increases in what is consumed, then an increase in output will result in an increase in pollution. But if preferences are nonhomothetic, so that the proportion of household spending on different items changes as income rises, then the response of pollution to growth will depend on the degree of relative risk-aversion and the elasticity of substitution in production between pollution and conventional inputs.

Selden and Song (1995) derive an inverted-U curve for the relationship between optimal pollution and the capital stock, assuming that optimal abatement is zero until a given capital stock is achieved, and that it rises thereafter at an
increasing rate. John and Pecchenino (1994), John, Pecchenio, Schimmelpfennig and Schreft (1995), and McConnell (1997) derive similar inverted-U curves by using overlapping generations models. Recent analytical work by López and Mitra (2000) suggests that corruption may also account for part of the observed relationship between development and environmental quality. Their results show that for any level of per capita income, the pollution level corresponding to corrupt behavior is always above the socially optimal level. Further, they show that the turning point of the environmental Kuznets curve takes place at income and pollution levels above those corresponding to the social optimum.

Numerous empirical studies have tested the environmental Kuznets curve model. The typical approach has been to regress cross-country measures of ambient air and water quality on various specifications of income per capita. For their data on pollution, these studies often rely on information from the Global Environmental Monitoring System (GEMS), an effort sponsored by the United Nations that has gathered pollution data from developed and developing countries. The GEMS database includes information on contamination from commonly regulated air and water pollutants. Stern, Auld, Common and Sanyal (1998) have supplemented the GEMS data with a more detailed accounting of airborne sulfur emissions. Although greenhouse gases have not been included in the GEMS database, carbon dioxide emissions estimates for most developed and developing countries are available from the U.S. Oak Ridge National Laboratories (Marland, Boden and Andres, 2001).

Empirical researchers are far from agreement that the environmental Kuznets curve provides a good fit to the available data, even for conventional pollutants. In one of the most comprehensive reviews of the empirical literature, Stern (1998) argues that the evidence for the inverted-U relationship applies only to a subset of environmental measures; for example, air pollutants such as suspended particulates and sulfur dioxide. Since Grossman and Krueger (1993) find that suspended particulates decline monotonically with income, even Stern’s subset is open to contest. In related work, Stern, Auld, Common and Sanyal (1998) find that sulfur emissions increase through the existing income range. Results for water pollution are similarly mixed.

Empirical work in this area is proceeding in a number of directions. First, international organizations such as the United Nations Environment Programme and the World Bank are sponsoring collection of more data on environmental quality in developing countries. As more data is collected, new opportunities will open up for studying the relationship between economic development and environmental quality. In the meantime, it is useful to think about how to compensate for incomplete monitoring information. For example, Selden and Song (1994) develop estimates of air emissions based on national fuel-use data and fuel-specific pollution parameters that are roughly adjusted for conditions in countries at varying income levels.

A second issue is that for many pollutants data is scarce everywhere, not just in developing countries. The GEMS effort has focused on a few “criteria” pollutants, so-designated because legal statutes have required regulators to specify their dam-
aging characteristics. Criteria air pollutants, for example, have generally included ozone, carbon monoxide, suspended particulates, sulfur dioxide, lead and nitrogen oxide. A far broader class of emissions, known as toxic pollutants, includes materials that cause death, disease or birth defects in exposed organisms. Among the hundreds of unregulated toxic pollutants that have been subjected to laboratory analysis, the quantities and exposures necessary to produce damaging effects have been shown to vary widely. Literally thousands of potentially toxic materials remain untested and unregulated.

Data gathering in this area has started, as some countries have mandated public reports of toxic emissions by industrial facilities. For example, the United States has a Toxic Release Inventory; Canada has a National Pollutant Release Inventory; the United Kingdom has a Pollutant Inventory; and Australia has a National Pollutant Inventory. Using sectoral estimates of toxic emissions relative to level of output, developed from U.S. data by Hettige, Martin, Singh and Wheeler (1995), researchers have estimated toxic emissions in eastern Europe (Laplante and Smits, 1998) and Latin America (Hettige and Wheeler, 1996; Dasgupta, Laplante and Meisner, 2001). However, the underlying scarcity of data has as yet made it impossible to do more than speculate about the shape of an environmental Kuznets curve for toxics.

A third empirical issue involves thinking about the curvature of the environmental Kuznets curve. In most cases, the implied relationship between income growth and pollution is sensitive to inclusion of higher-order polynomial terms in per capita income whose significance varies widely.

Fourth, it is useful to compare the results of time series studies where the environmental evidence is available. De Bruyn, van den Bergh and Opschoor (1998) estimate time series models individually for Netherlands, Germany, the United Kingdom and the United States and show that economic growth has had a positive effect on emissions of carbon dioxide, nitrogen oxides, and sulfur dioxide. They argue that conventional cross-section estimation techniques have generated spurious estimates of the environmental Kuznets curve because they do not adequately capture the dynamic process involved.

Given the data limitations, concerns over appropriate functional forms, and choices between cross-section and time series analysis, structural interpretations of the environmental Kuznets curve have remained largely ad hoc. In view of these uncertainties, few researchers have taken the next step and begun to study the sources of change in the marginal relationship between economic development and pollution.

How the Environmental Kuznets Curve Can Become Lower and Flatter

Research on the environmental Kuznets curve has suggested that its shape is not likely to be fixed. Instead, the relationship between growth in per capita
income and environmental quality will be determined by how many parties react to
economic growth and its side effects—including citizens, businesses, policymakers,
regulators, nongovernmental organizations, and other market participants. A body
of recent research has investigated these connections. The theme that emerges
from this research is that it is quite plausible for developing societies to have
improvements in environmental quality. It also seems likely that because of growing
public concern and research knowledge about environmental quality and regula-
tion, countries may be able to experience an environmental Kuznets curve that is
lower and flatter than the conventional measures would suggest. That is, they may
be able to develop from low levels of per capita income with little or no degradation
in environmental quality, and then at some point to experience improvements in
both income and environmental quality.

The Primary Role of Environmental Regulation

In principle, observed changes in pollution as per capita income rises could
come from several different sources: shifts in the scale and sectoral composition of
output, changes in technology within sectors, or the impact of regulation on
pollution abatement (Grossman and Krueger, 1993). The absence of appropriate
microdata across countries has precluded a systematic empirical approach to this
decomposition. However, the available evidence suggests that regulation is the
dominant factor in explaining the decline in pollution as countries grow beyond
middle-income status.

For instance, Panayotou (1997) estimates a decomposition equation for a
sample of 30 developed and developing countries for the period 1982–1994. He
incorporates policy considerations into the income-environment relationship while
decomposing it into scale, sectoral composition and pollution intensity (or pollu-
tion per unit of output) effects. His main finding, at least for ambient sulfur dioxide
levels, is that effective policies and institutions can significantly reduce environ-
mental degradation at low income levels and speed up improvements at higher
income levels, thereby lowering the environmental Kuznets curve and reducing the
environmental cost of growth. However, the estimated equation is not derived from
any formal structural equation. In addition, in the absence of actual measures of
environmental regulation, Panayotou uses indices of contract enforcement and
bureaucratic efficiency as proxies. De Bruyn (1997) decomposes the growth-
environment relationship in a sample of OECD and former socialist economies,
using a divisia index methodology. Analyzing changes in sulfur dioxide pollution,
he finds a significant role for environmental policy, but not for structural change
in the economy. In a cross-country study of water pollution abatement, Mani,
Hettige and Wheeler (2000) find that while some of the improvement in water
quality with increases in per capita income is attributable to sectoral composition
and technology effects, the main factor is stricter environmental regulation.

There appear to be three main reasons that richer countries regulate pollution
more strictly. First, pollution damage gets higher priority after society has com-
pleted basic investments in health and education. Second, higher-income societies
have more plentiful technical personnel and budgets for monitoring and enforce-
ment activities. Third, higher income and education empower local communities to enforce higher environmental standards, whatever stance is taken by the national government (Dasgupta and Wheeler, 1997; Pargal and Wheeler, 1996; Dean, 1999). The result of these mutually reinforcing factors, as shown in Figure 2, is a very close relationship between national pollution regulation and income per capita (Dasgupta, Mody, Roy and Wheeler, 2001).

Economic Liberalization

During the past two decades, many countries have liberalized their economies by reducing government subsidies, dismantling price controls, privatizing state enterprises and removing barriers to trade and investment. Easterly (2001) provides strong evidence that measures of financial depth and price distortion have improved significantly for developing countries since 1980. The result has been an adjustment toward economic activities that reflect comparative advantage at undistorted factor and product prices, which in turn can affect the level of pollution in an economy by shifting the sectoral composition.

One result has been growth of labor-intensive assembly activities such as garment production. These activities are seldom pollution-intensive, although there are some notable exceptions such as electronics assembly that employs toxic cleaning solvents and fabric production that generates organic water pollution and toxic pollution from chemical dyes (Hettige, Martin, Singh and Wheeler, 1995). Another likely area of comparative advantage is information services with relatively low skill requirements, such as records maintenance for internationally distributed information-processing services. Such activities are typically not very polluting. More environmentally sensitive areas of comparative advantage include large-scale agriculture and production that exploits local natural resources such as forest

Figure 2
Air Pollution Regulation and Income Per Capita in 31 Countries

products, basic metals and chemicals (Lee and Roland-Holst, 1997). These industries are often heavy polluters, because they produce large volumes of waste residuals and frequently employ toxic chemicals.

Elimination of government subsidies often has an environmentally beneficial effect in this context. The heaviest polluters often receive subsidies, because they operate in sectors such as steel and petrochemicals where state intervention has been common. Privatization and reduction of subsidies tend to reduce the scale of such activities, while expanding production in the assembly and service sectors that emit fewer pollutants (Dasgupta, Wang and Wheeler, 1997; Lucas, Hettige and Wheeler, 1992; Jha, Markandya and Vossenaar, 1999; Birdsall and Wheeler, 1993). Elimination of energy subsidies increases energy efficiency, shifts industry away from energy-intensive sectors, and reduces demand for pollution-intensive power (Vukina, Beghin and Solakoglu, 1999; World Bank, 1999). However, higher energy prices also induce shifts from capital- and energy-intensive production techniques to labor- and materials-intensive techniques, which are often more pollution-intensive in other ways (Mani, Hettige and Wheeler, 2000).

Economic liberalization also has a common effect, at least in pollution-intensive sectors, of enlarging the market share of larger plants that operate at more efficient scale (Wheeler, 2000; Hettige, Dasgupta and Wheeler, 2000). This change often involves a shift toward publicly held firms at the expense of family firms. The improvement in efficiency means less pollution per unit of production, although larger plants may also concentrate pollution in a certain locality (Lucas, Dasgupta and Wheeler, 2001). In China, state-owned enterprises have much higher costs for reducing air pollution because they are operated less efficiently. Figure 3 displays recent econometric estimates of control costs for sulfur dioxide air pollution in large Chinese factories (Dasgupta, Wang and Wheeler, 1997).

The level of polluting emissions also reflects managers’ technology decisions. In the OECD countries, innovations have generated significantly cleaner technologies that are available at incremental cost to producers in developing countries. Even in weakly regulated economies, many firms have adopted these cleaner technologies because they are more profitable. Increased openness to trade also tends to lower the price of cleaner imported technologies, while increasing the competitive pressure to adopt them if they are also more efficient (Reppelin-Hill, 1999; Huq, Martin and Wheeler, 1993; Martin and Wheeler, 1992). Thus, firms in relatively open developing economies adopt cleaner technologies more quickly (Birdsall and Wheeler, 1993; Huq, Martin and Wheeler, 1993).

While liberalization can certainly improve environmental conditions, it is no panacea. The evidence suggests that in a rapidly growing economy, the effect of lower pollution per unit of output as a result of greater efficiency is generally

1 Xu, Gau, Dockery and Chen (1994) have shown that atmospheric sulfur dioxide concentrations are highly correlated with damage from respiratory disease in China. Sulfur dioxide and other oxides of sulfur combine with oxygen to form sulfates and with water vapor to form aerosols of sulfuric and sulfurous acid. Much of the health damage from sulfur dioxide seems to come from fine particulates in the form of sulfates.
overwhelmed by the rise in overall pollution as a result of rising output (Beghin, Roland-Holst and van der Mensbrugghe, 1997; Dessus and Bussolo, 1998; Lee and Roland-Holst, 1997). Thus, total pollution will grow unless environmental regulation is strengthened (Mani, Hettige and Wheeler, 2000).

Pervasive Informal Regulation

Low-income communities frequently penalize dangerous polluters, even when formal regulation is weak or absent. Abundant evidence from Asia and Latin America shows that neighboring communities can strongly influence factories' environmental performance (Pargal and Wheeler, 1996; Hettige, Huq, Pargal and Wheeler, 1996; Huq and Wheeler, 1992; Hartman, Huq and Wheeler, 1997). Where formal regulators are present, communities use the political process to influence the strictness of enforcement. Where regulators are absent or ineffective, nongovernmental organizations and community groups—including religious institutions, social organizations, citizens’ movements, and politicians—pursue informal regulation. Although these pressures vary from region to region, the pattern everywhere is similar: Factories negotiate directly with local actors in response to threats of social, political or physical sanctions if they fail to compensate the community or to reduce emissions.

The response of factories can take many forms. Cribb (1990) cites the case of a cement factory in Jakarta that—without admitting liability for the dust it generates—“compensates local people with an ex gratia payment of Rp. 5000 and a tin of evaporated milk every month.” Agarwal, Chopra and Sharma (1982) describe a situation where, confronted by community complaints, a paper mill in India installed pollution abatement equipment—and to compensate residents for remaining damage, the mill also constructed a Hindu temple. If all else fails, community action can also trigger physical removal of the problem. In Rio de Janeiro, a neighborhood association protest against a polluting tannery led managers to relocate it to the city’s outskirts (Stotz, 1991). Mark Clifford (1990) has

Figure 3

Sulfur Dioxide Marginal Abatement Costs: Large Chinese Factories

reported in the *Far Eastern Economic Review* that community action prevented the opening of a chemical complex in Korea until appropriate pollution control equipment was installed. Indeed, communities sometimes resort to extreme measures. Cribb (1990) has recounted an Indonesian incident “reported from Banjaran near Jakarta in 1980 when local farmers burned a government-owned chemical factory that had been polluting their irrigation channels.”

Such examples are not limited to developing countries, of course. They also play an important role in the work of Coase (1960), who called traditional regulation into question by noting that pollution victims, as well as regulators, can take action if they perceive that the benefits outweigh the costs. Of course, the victims need information about pollution risks to take appropriate action. In most cases, such information can only be gathered by public authorities that have a legal mandate to collect it. We will return to this issue in our discussion of public disclosure as a new regulatory instrument in developing countries.

Pressure from Market Agents

Market agents can also play an important role in creating pressures for environmental protection. Bankers may refuse to extend credit because they are worried about environmental liability; consumers may avoid the products of firms that are known to be heavy polluters.

The evidence suggests that multinational firms are important players in this context. These firms operate under close scrutiny from consumers and environmental organizations in the high-income economies. Investors also appear to play an important role in encouraging clean production. Heavy emissions may signal to investors that a firm’s production techniques are inefficient. Investors also weigh potential financial losses from regulatory penalties and liability settlements. The U.S. and Canadian stock markets react significantly to environmental news, generating gains from good news and losses from bad news in the range of 1–2 percent (Muoghalu, Robison and Glascock, 1990; Lanoie and Laplante, 1994; Klassen and McLaughlin, 1996; Hamilton, 1995; Lanoie, Laplante and Roy, 1998). One recent study found that firms whose bad environmental press has the greatest impact on stock prices subsequently reduce emissions the most (Konar and Cohen, 1997). Similar effects of environmental news on stock prices have been identified in Argentina, Chile, Mexico and the Philippines (Dasgupta, Laplante and Mamingi, 2001). In fact, the market responses in these countries are much larger than those reported for U.S. and Canadian firms: Stock price gains average 20 percent in response to good news and losses range from 4–15 percent in the wake of bad news.

Multinationals have responded to such factors. A recent study of 89 U.S.-based manufacturing and mining multinationals with branches in developing countries found that nearly 60 percent adhere to a stringent internal standard that reflects OECD norms, while the others enforce local standards (Dowell, Hart and Yeung, 2000). Controlling for other factors such as physical assets and capital structure, the study found that firms with uniform internal standards had an average market value $10.4 billion higher than their counterparts. Indeed, multinational firms operating in low-income economies are often environmentally friendlier than domestically
owned firms. For example, a careful audit of Indonesian factories undertaken in 1995 found that almost 70 percent of domestic plants failed to comply with Indonesian water pollution regulations, while around 80 percent of the multinational plants were fully compliant (Afsah and Vincent, 1997).

Better Methods of Environmental Regulation

Poor countries with weak regulatory institutions can reduce pollution significantly by following a few basic principles. The first is focus. In many areas, relatively few sources are responsible for most of the pollution (Hettige, Martin, Singh and Wheeler, 1995; World Bank, 1999). Therefore, emissions can be significantly reduced by targeting regulatory monitoring and enforcement on those dominant sources.

Notable inroads against pollution have also been made where environmental agencies in developing countries have begun moving away from traditional command-and-control policies toward market-oriented forms of regulation. Pollution charges have proven feasible in developing countries, with successful implementation in China (Wang and Wheeler, 1996), Colombia, Malaysia and Philippines (World Bank, 1999). In Colombia, for example, the recent implementation of water pollution charges in the Rio Negro Basin reduced organic discharges from factories by 52 percent during the program’s first year of operation. No participating factory seems to have experienced financial difficulties in the process (World Bank, 1999). A pollution charge program in the Laguna Bay region of Philippines reduced organic pollution by 88 percent during its first two years of operation (World Bank, 1999). Similar conclusions have emerged from studies of regulation and control costs in Malaysia (Jha, Markandya and Vossenaar, 1999; Khalid and Braden, 1993).

Better Information

Until recently, relatively little was known about the economic damage associated with pollution in developing countries. During the past few years, however, economic analyses have repeatedly shown that large cities in developing countries suffer very high costs from pollution, even when damage is evaluated at conservative estimates of local opportunity costs (Dasgupta, Wang and Wheeler, 1997; Von Amsberg, 1997; Calkins, 1994). Such evidence has induced rapid strengthening of pollution control in the large cities of China, Brazil, Mexico and other developing countries.

This improved information combines with pressures from citizens, government, nongovernmental organizations and market agents to create pressures for rapid enactment of stricter environmental regulations. Strong results have also been obtained by programs that provide accessible public information about polluters, pollution damages, local environmental quality and the cost of pollution abatement. Such programs significantly improve the ability of local communities to protect themselves, the ability of national regulators to enforce decent environmental standards, and the ability of market agents to reward clean firms and punish heavy polluters.
International institutions such as the World Bank have begun supporting this idea in collaborative programs with environmental agencies in Indonesia, Philippines, China, India, Thailand, Vietnam, Mexico, Colombia, Brazil and elsewhere. In Indonesia and Philippines, pilot public disclosure programs have reduced emissions from hundreds of large water polluters by 40–50 percent during a two-year period (Afsah and Vincent, 1997; World Bank, 1999). After the success of a pilot public disclosure program in two Chinese cities, the approach is now being extended to an entire province, Jiangsu, with a population of approximately 100 million.

Cautionary Notes

In light of recent research and policy experience, the most plausible long-run forecast is for rising, not falling, environmental quality in both high- and low-income economies. Indeed, it is likely that the environmental Kuznets curve has begun to flatten downward under the combined impact of economic liberalization, improved information, and more stringent and cost-effective approaches to regulating pollution under developing-country conditions. But although we are sanguine about the prospects for combining economic growth and environmental protection, we remain cautious optimists. At least four plausible concerns have been raised.

Will Countries Need to Suffer Lower Environmental Quality in the Short and Medium Run?

The conventional environmental Kuznets curve implies that vast areas of the world—including much of Asia and Africa—will have to experience rising pollution levels until their per capita incomes rise significantly. However, there is no evidence to support the view that this would be economically advantageous. Several benefit-cost analyses have made a persuasive case for stricter pollution control, even in very low income economies. In China, for example, a recent study has shown that the economic returns to pollution abatement would justify significant tightening of regulation (Dasgupta, Wang and Wheeler, 1997). Studies in Indonesia (Calkins, 1994) and Brazil (Von Amsberg, 1997) have produced similar conclusions.

Countries whose economic policies induce a rapid expansion of income and employment may experience severe environmental damage unless appropriate environmental regulations are enacted and enforced. Economic analysis can be employed to justify environmental regulatory policies that result in a flatter and lower environmental Kuznets curve.

2 For more information about these programs, see the World Bank’s “New Ideas in Pollution Regulation” website at (http://www.worldbank.org/nipr).
Globalization and the Risk of a Race to the Bottom

Perhaps the most commonly heard critique of the environmental Kuznets curve is that even if such a relationship existed in the past, it is unlikely to exist in the future because of the pressures that global competition places on environmental regulations. In the “race to the bottom” scenario, relatively high environmental standards in high-income economies impose high costs on polluters. Shareholders then drive firms to relocate to low-income countries, whose people are so eager for jobs and income that their environmental regulations are weak or nonexistent. Rising capital outflows force governments in high-income countries to begin relaxing environmental standards. As the ensuing race to the bottom accelerates, the environmental Kuznets curve flattens and rises toward the highest existing level of pollution.

In the United States, political opponents of the World Trade Organization (WTO) frequently invoke elements of this model. For example, Congressman David Bonior (1999) offered the following critique: “The WTO, as currently structured, threatens to undo internationally everything we have achieved nationally—every environmental protection, every consumer safeguard, every labor victory.” Herman Daly (2000), an economist at the University of Maryland’s School of Public Affairs, has recently provided a forceful statement of the race to the bottom model.

Proponents of this model often recommend high environmental standards that would be uniform around the world. For countries that are unwilling or unable to enforce such standards, tariffs or other restrictions and penalties would be imposed on exports of their pollution-intensive products to neutralize their cost advantage as “pollution havens.” Proponents of free trade naturally view these prescriptions as anathema, arguing that their main impact would be denial of jobs and income to the world’s poorest people.

The race to the bottom model has an air of plausibility. It does appear that polluting activities in high-income economies face higher regulatory costs than their counterparts in developing countries (Jaffe, Peterson, Portney and Stavins, 1995; Mani and Wheeler, 1998). This creates an incentive for at least some highly polluting industries to relocate. But how substantial is this incentive compared to the other location incentives faced by businesses? To what extent have countries actually been reducing their environmental standards to provide such location incentives?

Research in both high- and low-income countries suggests that pollution control does not impose high costs on business firms. Jaffe, Peterson, Portney and Stavins (1995) and others have shown that compliance costs for OECD industries are surprisingly small, despite the use of command-and-control regulations that are economically inefficient. Firms in developing countries frequently have even lower abatement costs, because the labor and materials used for pollution control are less costly than in the OECD economies.

Numerous studies have suggested that, in comparison with other factors considered by businesses, pollution-control costs are not major determinants of
relocation (Eskeland and Harrison, 1997; Albrecht, 1998; Levinson, 1997; Van Beers and van den Bergh, 1997; Tobey, 1990, Janicke, Binder and Monch, 1997). More important factors include distance to market and infrastructure quality and cost (Mody and Wheeler, 1992). In a study of Mexican maquiladora plants, Grossman and Krueger (1993) found that pollution abatement costs were not a major determinant of imports from Mexico, while their unskilled labor component was of paramount importance. Most OECD-based multinationals maintain nearly uniform environmental standards in their national and international plants. They do so to realize economies in engineering standards for design, equipment purchases and maintenance; to reduce potential liability from regulatory action; and to guard against reputational damage in local and international markets (Dowell, Hart and Yeung, 2000).

In fairness, the evidence also suggests that pollution havens can emerge in extreme cases (Xing and Kolstad, 1995). During the 1970s, for example, environmental regulation tightened dramatically in the OECD economies with no countervailing change in developing countries. The regulatory cost differential was apparently sufficient to generate a significant surge in production and exports of pollution-intensive products from developing countries. Since then, however, regulatory changes in the developing countries have narrowed the gap and apparently stopped the net migration of polluting industries (Mani and Wheeler, 1998). This pattern of tighter environmental regulations in low-income countries runs counter to the “race to the bottom” scenario.

Indeed, the scenario in which more heavily polluting industries locate in low-income countries and export back to high-income countries appears to be an incorrect description of actual patterns. In recent times, developing country imports from high-income economies have been more pollution-intensive than their exports to those economies (Mani and Wheeler, 1998; Albrecht, 1998).

In short, there are many reasons to be dubious about the race to the bottom model. But perhaps the most powerful challenge to the model is a direct assessment of its simple and robust prediction: After decades of increasing capital mobility and economic liberalization, the race to the bottom should already be underway and pollution should be increasing everywhere. It should be rising in poor countries because they are pollution havens, and in high-income economies because they are relaxing standards to remain cost-competitive. Wheeler (2001) has tested these propositions using data on foreign investment and urban air quality in China, Mexico and Brazil. Together, these three countries received 60 percent of the total foreign direct investment for developing countries in 1998. If the race to the bottom model is correct, then air pollution should be rising in all three countries. Moreover, air quality should be deteriorating in U.S. cities, since U.S. industrial imports from all three countries have been expanding for decades.

As Figures 4 and 5 indicate, the converse is true: Instead of racing toward the bottom, major urban areas in China, Brazil, Mexico and the United States have all experienced significant improvements in air quality, as measured by concentrations
of fine particulate matter (PM-10) or suspended particulate matter (SPM). Further research is necessary before any definitive conclusions can be drawn, because similar comparisons are currently unavailable for other pollutants. At present,
however, the available evidence strongly suggests that the pessimism of the race to the bottom model is unwarranted.

Are Other Pollutants Rising? The Case of Toxic Chemicals

Even if one accepts the evidence that growth in per capita income can be accompanied by reductions in well-known conventional pollutants, there is still a question about whether other less-known pollutants and environmental hazards may be rising with levels of per capita income.

One recent focus has been on emissions of toxic organic chemicals into the air and water. Although some toxic chemicals are monitored in some industrialized countries, they remain largely unregulated almost everywhere. Thornton (2000) argues that conventional regulation has failed to control the proliferation of organic chlorine compounds that are carcinogenic and mutagenic. He recommends banning the whole family of chlorine compounds, which would be economically disruptive, to put it mildly. The international community has begun responding to such thinking for some “persistent” organic pollutants that are among the organochlorines known to be most dangerous, because they accumulate in plant and animal life. In May 2001, 127 countries signed a treaty to ban international production and trade in twelve persistent organic pollutants, including PCBs, dioxins, DDT and other pesticides that have been shown to contribute to birth defects and cancer (“U.N. Treaty on Chemicals,” 2001).

Such concerns raise the possibility that economic development will always be accompanied by environmental risks that are either newly discovered or generated by the use of new materials and technologies. If this proves to be the case, the
recent treaty banning production and sale of persistent organic pollutants may be a harbinger of broader regulatory changes that will affect both developed and developing countries.

This issue provides a useful reminder that our understanding of environmental problems and remedies must develop over time. It seems unlikely that addressing pollution from organochlorines and other toxics will require measures as radical as those suggested by Thornton (2000). However, it will clearly be inappropriate to declare conventional environmental protection a success if it reduces a limited list of conventional pollutants while ignoring an ever-growing list of toxic pollutants that may pose threats to future generations as well as this one.

Building Regulatory Capability

If per capita income and environmental quality are to increase together, developing countries will require effective regulatory capabilities. These capabilities include not only appropriate legal measures for regulation, but also effective monitoring and enforcement of regulatory compliance. Better environmental governance, broadly understood, involves the enactment of liberalizing economic measures that affect pollution through their impact on an economy’s sectoral composition and efficiency. It also includes the capability to develop and disseminate information about environmental quality and pollution sources, even if such information may embarrass certain government officials in the short run. Much of the pessimism about the prospects for environmental quality in developing countries is not about whether a win-win outcome is technically possible for the economy and the environment, but whether these societies have the institutional capabilities necessary for achieving such an outcome.

The evidence on how regulatory capability can be developed is sparse, but the World Bank’s indicators of institutional and policy development provide grounds for moderate optimism. It appears that productive public policy is correlated with economic development—but that there is considerable variation in the relationship. Some excellent economic performers have quite poor regulatory capability by international standards. In turn, general policy indicators predict environmental policy performance very well, but some countries with low overall policy ratings have proven capable of focused efforts to protect critical environmental assets. The most pronounced outliers are mostly countries where specific natural resources are important determinants of tourist revenue, such as Maldives, Seychelles, Belize, Ecuador and Bhutan. Apparently, even poorly administered societies can strengthen regulation when environmental damage is clear, costly, and concentrated in a few sites. But these exceptions aside, it seems unlikely that broader environmental regulation will outpace more general institutional reform. A full response to the environmental challenge of globalization will therefore require serious attention to long-run development of public sector administrative and decision-making capacity.

Sustaining effective environmental regulation will also require the design of appropriate financing mechanisms, some of which may depart from theoretically
optimal measures under the conditions that prevail in developing countries. For example, Colombia’s successful pollution charge program became politically feasible only after regulators, industrialists, and public sewerage authorities agreed to use part of the revenues to support local regulatory agencies and to invest the rest in local environmental projects. Although traditional public finance theory does not support earmarking revenues in this way, rather than balancing costs and benefits of all spending choices, the program’s results have clearly compensated for this conceptual flaw. Local financing may also prove to be critical during future recessions, when Colombia’s central government may reduce support for national monitoring and enforcement of regulations. However, accepting political reality does not imply uncritical acceptance of any funding scheme. The designers of Colombia’s system have stressed the application of clear benefit-cost criteria to local financing of pollution reduction projects.

International Assistance

We believe that the international community can play a valuable role in lowering and flattening the environmental Kuznets curve by financing appropriate training, policy reforms, information gathering and public environmental education. In our view, a steadily accumulating body of research and program experience suggests two keys to rapid progress on this front. The first is support for programs that provide public, easily accessible information about polluters, pollution damages, local environmental quality and the cost of pollution abatement. The second is support for development of stronger regulatory institutions and cost-effective measures to reduce pollution. Sustained support is critical, because institutional development takes time.

We also believe that trade and aid sanctions are inappropriate and ineffective levers for narrowing the regulatory gap between low- and high-income countries. Such sanctions are unjust because they penalize both poor workers and the many firms in developing countries that have excellent environmental performance despite weak regulation (Huq and Wheeler, 1992; Hartman, Huq and Wheeler, 1997; Afsah and Vincent, 1997; World Bank, 1999). In any case, weak regulatory institutions would prevent governments of low-income countries from delivering on promises of OECD-level regulation, even if they were willing to make them. A similar caveat applies to multilateral institutions such as the World Bank, whose operating rules now mandate accounting for environmental risks in economic reform programs. While it is important to avoid serious pollution damage during rapid liberalization, it is also critical to support carefully targeted pollution control programs whose long-run resource requirements are feasible for the recipient countries.

Particular thanks to David Shaman and Yasmin D’Souza for their support, and to Shakeb Afsah, Hemamala Hettige, Mainul Huq, Muthukumara Mani, Craig Meisner, Kiran
Pendey and Sheoli Pargal for valuable contributions to the research and policy initiatives reviewed in this paper. Thanks also to Timothy Taylor, Alan Krueger, Brad De Long and Michael Waldman for valuable comments on an earlier draft.

References

This article has been cited by:

15. Li He, Xiaoling Zhang, Yaxue Yan. 2021. Heterogeneity of the Environmental Kuznets Curve across Chinese cities: How to dance with ‘shackles’?. *Ecological Indicators* **130**, 108128. [Crossref]

19. Cengiz Aytun, Cemil Serhat Akin. 2021. Can education lower the environmental degradation? Bootstrap panel Granger causality analysis for emerging countries. *Environment, Development and Sustainability* 188. [Crossref]

20. Ferda Yerdelen Tatoğlu, Buğra Polat. 2021. Occurrence of turning points on environmental kuznets curve: Sharp breaks or smooth shifts?. *Journal of Cleaner Production* 317, 128333. [Crossref]

23. Matías Piaggio. 2021. The value of public urban green spaces: Measuring the effects of proximity to and size of urban green spaces on housing market values in San José, Costa Rica. *Land Use Policy* 109, 105656. [Crossref]

36. Juan Du, Hongtao Yi. 2021. Target-setting, political incentives, and the tricky trade-off between economic development and environmental protection. *Public Administration* **85**. [Crossref]

47. Umme Habiba, Cao Xinbang, Rahil Irfan Ahmad. 2021. The influence of stock market and financial institution development on carbon emissions with the importance of renewable energy consumption and foreign direct investment in G20 countries. *Environmental Science and Pollution Research* **90**. [Crossref]
48. Rui Yang, Xin Miao, Christina W.Y. Wong, Teng Wang, Mengjin Du. 2021. Assessment on the interaction between technology innovation and eco-environmental systems in China. *Environmental Science and Pollution Research* 74. [Crossref]

52. Saptorshee Kanto Chakraborty, Massimiliano Mazzanti. 2021. Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach. *Economia Politica* 31. [Crossref]

56. Xinfei Li, Baodong Cheng, Qiling Hong, Chang Xu. 2021. Can a Win–Win Situation of Economy and Environment Be Achieved in Cities by the Government’s Environmental Regulations?. *Sustainability* 13:11, 5829. [Crossref]

58. Ellie-Anne Jones, Rick Stafford. 2021. Neoliberalism and the Environment: Are We Aware of Appropriate Action to Save the Planet and Do We Think We Are Doing Enough?. *Earth* 2:2, 331-339. [Crossref]

60. EKUNDAYO PETER MESAGAN, KAYODE ABIODUN AKINYEMI, ISMAILA AKANNI YUSUF. 2021. FINANCIAL INTEGRATION AND ENVIRONMENT IN AFRICA: THE ROLE OF OUTPUT GROWTH AND FOREIGN DIRECT INVESTMENT. *International Journal of Big Data Mining for Global Warming* 03:01, 2150002. [Crossref]

68. Magdalena Cyrek, Piotr Cyrek. 2021. Does Economic Structure Differentiate the Achievements towards Energy SDG in the EU?. *Energies* 14:8, 2229. [Crossref]

71. Enn Lun Yong. 2021. Understanding the economic impacts of sea-level rise on tourism prosperity: Conceptualization and panel data evidence. *Advances in Climate Change Research* 12:2, 240-253. [Crossref]

74. Mahmoud Salari, Roxana J. Javid, Hamid Noghanibehambari. 2021. The nexus between CO2 emissions, energy consumption, and economic growth in the U.S. *Economic Analysis and Policy* 69, 182-194. [Crossref]

75. Fatima Bibi, Muhammad Jamil. 2021. Testing environment Kuznets curve (EKC) hypothesis in different regions. *Environmental Science and Pollution Research* 28:11, 13581-13594. [Crossref]

77. Xiaodong Yang, Jinning Zhang, Siyu Ren, Qiying Ran. 2021. Can the new energy demonstration city policy reduce environmental pollution? Evidence from a quasi-natural experiment in China. *Journal of Cleaner Production* 287, 125015. [Crossref]

79. Mantu Kumar Mahalik, Hrushikesh Mallick, Hemachandra Padhan. 2021. Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. *Renewable Energy* 164, 419-432. [Crossref]

80. Monica Singhania, Neha Saini. 2021. Demystifying pollution haven hypothesis: Role of FDI. *Journal of Business Research* 123, 516-528. [Crossref]
81. Matthew E. Kahn, Nancy Lozano-Gracia, Maria Edisa Soppelsa. 2021. POLLUTION'S ROLE IN REDUCING URBAN QUALITY OF LIFE IN THE DEVELOPING WORLD. *Journal of Economic Surveys* 35:1, 330-347. [Crossref]

82. Izhar Hussain Shah, Hung-Suck Park. 2021. Chronological change of resource metabolism and decarbonization patterns in Pakistan: Perspectives from a typical developing country. *Journal of Industrial Ecology* 25:1, 144-161. [Crossref]

84. Su-Mei Chen, Jia-Jia Ou, Ling-Yun He. 2021. The Environmental and Health Impacts of Poverty Alleviation in China: From a Consumption-Based Perspective. *Sustainability* 13:4, 1784. [Crossref]

85. Cosimo Magazzino, Marco Mele, Nicolas Schneider, Samuel Asumadu Sarkodie. 2021. Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy?: *Science of The Total Environment* 755, 142510. [Crossref]

86. Bruno Chiarini, Antonella D’Agostino, Elisabetta Marzano, Andrea Regoli. 2021. Air quality in urban areas: Comparing objective and subjective indicators in European countries. *Ecological Indicators* 121, 107144. [Crossref]

88. Abdel-Mohsen O. Mohamed, Munjed A. Maraqa, Fares M. Howari, Evan K. Paleologos. Outdoor air pollutants 491-554. [Crossref]

89. Youssef Abdul Razzak Doughan. Factors of Production, Economic Growth, and Sustainable Development 427-439. [Crossref]

90. Daniel Balsalobre-Lorente, Nuno Carlos Leitão, Festus Victor Bekun. 2021. Fresh Validation of the Low Carbon Development Hypothesis under the EKC Scheme in Portugal, Italy, Greece and Spain. *Energies* 14:1, 250. [Crossref]

92. Indrani Roy Chowdhury, Anusree Paul, Tapaswini Nayak. Ambient Air Pollution and Respiratory Illness: A Study in Opencast Coal Mining Region of Odisha 281-301. [Crossref]

93. Mariana Conte Grand. Rankings for Carbon Emissions and Economic Growth Decoupling 61-83. [Crossref]

96. Shikha Singh, Abhinav Yadav. Interconnecting the environment with economic development of a nation 35-60. [Crossref]

97. Daniela Perrotti, Pramit Verma, K.K. Srivastava, Pardeep Singh. Challenges and opportunities at the crossroads of Environmental Sustainability and Economy research 345-360. [Crossref]
98. James Ming Chen, Mira Zovko, Nika Šimurina, Vatroslav Zovko. 2021. Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution. SSRN Electronic Journal 37. . [Crossref]

100. Wanfang Xiong, Yan Han, M. James C. Crabbe, Xiao-Guang Yue. 2020. Fiscal Expenditures on Science and Technology and Environmental Pollution: Evidence from China. International Journal of Environmental Research and Public Health 17:23, 8761. [Crossref]

102. Mucahit Aydin, Yunus Emre Turan. 2020. The influence of financial openness, trade openness, and energy intensity on ecological footprint: revisiting the environmental Kuznets curve hypothesis for BRICS countries. Environmental Science and Pollution Research 27:34, 43233-43245. [Crossref]

106. Benjamin Cashore, Iben Nathan. 2020. Can finance and market driven (FMD) interventions make “weak states” stronger? Lessons from the good governance norm complex in Cambodia. Ecological Economics 177, 106689. [Crossref]

107. Muhammad Ifikhar Ul Husnain, Azad Haider, Muhammad Aamir Khan. 2020. Does the environmental Kuznets curve reliably explain a developmental issue?. Environmental Science and Pollution Research 25. . [Crossref]

110. Simona-Roxana Ulman, Costica Mihai, Cristina Cautisanu. 2020. Peculiarities of the Relation between Human and Environmental Wellbeing in Different Stages of National Development. Sustainability 12:19, 8106. [Crossref]

113. Sofien Tiba, Fateh Belaid. 2020. The pollution concern in the era of globalization: Do the contribution of foreign direct investment and trade openness matter?. Energy Economics 92, 104966. [Crossref]

122. Enrico Maria Mosconi, Andrea Colantoni, Filippo Gambella, Eva Cudlinová, Luca Salvati, Jesús Rodrigo-Comino. 2020. Revisiting the Environmental Kuznets Curve: The Spatial Interaction between Economy and Territory. *Economies* 8:3, 74. [Crossref]

129. Muhammed Ashiq Villanthenkodath, Mantu Kumar Mahalik. 2020. Technological innovation and environmental quality nexus in India: Does inward remittance matter?. *Journal of Public Affairs* 37. [Crossref]

130. Andrew Brennan, Astghik Mavisakalyan, Yashar Tarverdi. Responses to Climate Change 9-32. [Crossref]
131. Zhenran Li, Yan Song, Aina Zhou, Jun Liu, Jingru Pang, Ming Zhang. 2020. Study on the pollution emission efficiency of China’s provincial regions: The perspective of Environmental Kuznets curve. *Journal of Cleaner Production* 263, 121497. [Crossref]

133. Lourdes Isabel Patiño, Emilio Padilla, Vicent Alcántara, Josep Lluis Raymond. 2020. The Relationship of Energy and CO2 Emissions with GDP per Capita in Colombia. *Atmosphere* 11:8, 778. [Crossref]

135. Lei Wang, Xuan Vinh Vo, Muhammad Shahbaz, Ayesegul Ak. 2020. Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21?. *Journal of Environmental Management* 268, 110712. [Crossref]

136. Yifei Zhang, Sheng Li, Tianyuan Luo, Jing Gao. 2020. The effect of emission trading policy on carbon emission reduction: Evidence from an integrated study of pilot regions in China. *Journal of Cleaner Production* 265, 121843. [Crossref]

138. Ranjula Bali Swain, Uma S. Kambhampati, Amin Karimu. 2020. Regulation, governance and the role of the informal sector in influencing environmental quality?. *Ecological Economics* 173, 106649. [Crossref]

139. Simrat Kaur. 2020. Public preferences for setting up a biomass power plant to combat open-field burning of rice crop residues: A case study of district Sangrur, Punjab, India. *Biomass and Bioenergy* 138, 105577. [Crossref]

141. Devleena Chakravarty, Sabuj Kumar Mandal. 2020. Is economic growth a cause or cure for environmental degradation? Empirical evidences from selected developing economies. *Environmental and Sustainability Indicators* 100045. [Crossref]

143. Zhenbo Zhang, Taijun Jin, Xiaohua Meng. 2020. From race-to-the-bottom to strategic imitation: how does political competition impact the environmental enforcement of local governments in China?. *Environmental Science and Pollution Research* 27:20, 25675-25688. [Crossref]

149. Eyup Dogan, Recep Ulucak, Emrah Kocak, Cem Isik. 2020. The use of ecological footprint in estimating the Environmental Kuznets Curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Science of The Total Environment 723, 138063. [Crossref]

150. Dohyung Kim, Sun Go. 2020. Human Capital and Environmental Sustainability. Sustainability 12:11, 4736. [Crossref]

151. Anver C. Sadath, Rajesh H. Acharya. 2020. Economic growth and environmental degradation: How to balance the interests of developed and developing countries. ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT 2, 25–47. [Crossref]

152. D Horen Greenford, T Crownshaw, C Lesk, K Stadler, H D Matthews. 2020. Shifting economic activity to services has limited potential to reduce global environmental impacts due to the household consumption of labour. Environmental Research Letters 15:6, 064019. [Crossref]

153. Ming Zhang, Xinran Sun, Wenwen Wang. 2020. Study on the effect of environmental regulations and industrial structure on haze pollution in China from the dual perspective of independence and linkage. Journal of Cleaner Production 256, 120748. [Crossref]

154. B Mulyanto, D Ernawati, K Munibah. 2020. Relationship of the land status with forest and land fire disaster: case study in the Central Kalimantan Province. IOP Conference Series: Earth and Environmental Science 504, 012014. [Crossref]

157. Min Jiang, Euijune Kim, Youngjin Woo. 2020. The Relationship between Economic Growth and Air Pollution—A Regional Comparison between China and South Korea. International Journal of Environmental Research and Public Health 17:8, 2761. [Crossref]

164. Xinghua Zhao, Zongfeng Sun. 2020. The Effect of Satisfaction with Environmental Performance on Subjective Well-Being in China: GDP as a Moderating Factor. Sustainability 12:5, 1745. [Crossref]
165. Germà Bel, Jordi J. Teixidó. 2020. The Political Economy of the Paris Agreement: Income Inequality and Climate Policy. *Journal of Cleaner Production* 121002. [Crossref]

168. Shen Yue, Irfan Ullah Munir, Shabir Hyder, Abdelmohsen A. Nassani, Muhammad Moinuddin Qazi Abro, Khalid Zaman. 2020. Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues. *Resources Policy* 65, 101583. [Crossref]

169. Saeed Moshiri, Arian Daneshmand. 2020. How effective is government spending on environmental protection in a developing country?. *Journal of Economic Studies* 47:4, 789-803. [Crossref]

171. Yangang Fang, Kai Xu, Xiaoyi Guo, Ying Hong. 2020. Identifying determinants of straw open field burning in northeast China: Toward greening agriculture base in newly industrializing countries. *Journal of Rural Studies* 74, 111-123. [Crossref]

172. Arifur Rahman, S. M. Woahid Murad, Fayyaz Ahmad, Xiaowen Wang. 2020. Evaluating the EKC Hypothesis for the BCIM-EC Member Countries under the Belt and Road Initiative. *Sustainability* 12:4, 1478. [Crossref]

173. Yi Liu, Liyuan Yang, Wei Jiang. 2020. Qualitative and quantitative analysis of the relationship between water pollution and economic growth: a case study in Nansi Lake catchment, China. *Environmental Science and Pollution Research* 27:4, 4008-4020. [Crossref]

174. Kavi Bhalla, Dinesh Mohan, Brian O'Neill. 2020. What can we learn from the historic road safety performance of high-income countries?. *International Journal of Injury Control and Safety Promotion* 27:1, 27-34. [Crossref]

175. Julia Swart, Lisa Brinkmann. Economic Complexity and the Environment: Evidence from Brazil 3-45. [Crossref]

176. Daniel Balsalobre-Lorente, Muhammad Shahbaz, Aviral K. Tiwari, Jose C. Jabbour. The Applicability of the Inflection Point in the Environmental Correction Process 771-779. [Crossref]

177. Shasha Zhao. Healthy Cities and Sustainable Innovation 239-246. [Crossref]

178. Huawen Han, Haiying Huang, Xiangkai Li. Current Policies and Policy Implications for Environmental Pollution 219-245. [Crossref]

179. Canfei He, Xiyan Mao. Developing Environmental Economic Geography 17-55. [Crossref]

185. Lev E. Lukianov. 2020. ANALYSIS TOOLS OF THE RELATIONSHIP BETWEEN ECONOMIC DEVELOPMENT AND THE ENVIRONMENTAL SITUATION IN CHINA. Bulletin of the Moscow State Regional University (Geographical Environment and Living Systems) :4, 57-69. [Crossref]

186. Dorota Wawrzyniak, Wirginia Doryń. 2020. Does the quality of institutions modify the economic growth-carbon dioxide emissions nexus? Evidence from a group of emerging and developing countries. Economic Research-Ekonomska Istraživanja 33:1, 124-144. [Crossref]

187. Lyubomira Dimitrova. The economy of Bulgarian Districts and its effect on environmental performance 85-98. [Crossref]

189. Yakubu Awudu Sare. 2019. Effect of financial sector development on energy consumption in Africa: Is it threshold specific?. International Journal of Green Energy 16:15, 1637-1645. [Crossref]

192. Samuel Adams, Alex O. Acheampong. 2019. Reducing carbon emissions: The role of renewable energy and democracy. Journal of Cleaner Production 240, 118245. [Crossref]

194. Yu Tu, Benhong Peng, Guo Wei, Ehsan Elahi, Tongrui Yu. 2019. Regional environmental regulation efficiency: spatiotemporal characteristics and influencing factors. Environmental Science and Pollution Research 26:36, 37152-37161. [Crossref]

198. Bo Pieter Johannes Andrée, Andres Chamorro, Phoebe Spencer, Eric Koomen, Harun Dogo. 2019. Revisiting the relation between economic growth and the environment; a global assessment of
deforestation, pollution and carbon emission. *Renewable and Sustainable Energy Reviews* **114**, 109221. [Crossref]

204. Edward B. Barbier. *Natural Resources and Economic Development* **9**. [Crossref]

205. Samuel Asumadu Sarkodie, Vladimir Strezov, Yijiao Jiang, Tim Evans. 2019. Proximate determinants of particulate matter (PM2.5) emission, mortality and life expectancy in Europe, Central Asia, Australia, Canada and the US. *Science of The Total Environment* **683**, 489–497. [Crossref]

208. Ekundayo P. Mesagan, Wakeel A. Isola, Kazeem B. Ajide. 2019. The capital investment channel of environmental improvement: evidence from BRICS. *Environment, Development and Sustainability* **21**:4, 1561-1582. [Crossref]

213. Halit Levent ORMAN, Servet CEYLAN, Burcu YILMAZ ŞAHİN. 2019. DIŞ TİCARET VE ÇEVRE KİRLİLİĞİ İLİŞKİSİ: PANEL VERİ ANALİZİ. *Elektronik Sosyal Bilimler Dergisi* 1500-1512. [Crossref]

with an application of Quantile-on-Quantile regression (QQR) approach. *Energy Policy* **129**, 120-131. [Crossref]

229. Andrew A. Alola. 2019. Carbon emissions and the trilemma of trade policy, migration policy and health care in the US. *Carbon Management* **10**:2, 209-218. [Crossref]

241. Vladimir Udalov. The Impact of Natural Disasters on Individuals’ Choice Between Economic Growth and Environmental Protection: Empirical Evidence from the World Values Survey 15-30. [Crossref]

242. Shasha Zhao. Healthy Cities and Sustainable Innovation 1-8. [Crossref]

243. Raymond J. MacDermott, A. Basuchoudhary, J. Bang. Trade, Trade Agreements, and the Environment 107-112. [Crossref]

244. Burcu Özcan, Ilhan Öztürk. A Historical Perspective on Environmental Kuznets Curve 1-7. [Crossref]

245. Avik Sinha, Muhammad Shahbaz, Daniel Balsalobre. Data Selection and Environmental Kuznets Curve Models - Environmental Kuznets Curve Models, Data Choice, Data Sources, Missing Data, Balanced and Unbalanced Panels 65-83. [Crossref]

248. Tonmoy Chatterjee. Environmental Regulation, International Trade, and Informal Sector 80-106. [Crossref]

249. Zhaohai Bai, Jun Zhao, Zhibiao Wei, Xinpeng Jin, Lin Ma. 2019. Socio-economic drivers of pig production and their effects on achieving sustainable development goals in China. *Journal of Integrative Environmental Sciences* **16**:1, 141-155. [Crossref]

250. Sabrina Auci, Giovanni Trovato. 2018. The environmental Kuznets curve within European countries and sectors: greenhouse emission, production function and technology. *Economia Politica* **35**:3, 895-915. [Crossref]

252. Tobias Böhmelt, Farzad Vaziri, Hugh Ward. 2018. Does green taxation drive countries towards the carbon efficiency frontier?. *Journal of Public Policy* **38**:4, 481-509. [Crossref]

259. Ningli Wáng, Huiming Zhu, Yawei Guo, Cheng Peng. 2018. The heterogeneous effect of democracy, political globalization, and urbanization on PM2.5 concentrations in G20 countries: Evidence from panel quantile regression. *Journal of Cleaner Production* 194, 54–68. [Crossref]

260. Zorzeta Bakaki, Thomas Bernauer. 2018. Do economic conditions affect public support for environmental policy?. *Journal of Cleaner Production* 195, 66–78. [Crossref]

262. Jung Choi, Doo Han. 2018. The Links between Environmental Innovation and Environmental Performance: Evidence for High- and Middle-Income Countries. *Sustainability* 10:7, 2157. [Crossref]

263. Alexandre Hebil Ramos, Mara Madaleno, Celeste Amorim Varum. An Analysis of the Environmental Kuznets Curve (EKC) Hypothesis in Portugal: Sector Data and Innovation Effects 1–6. [Crossref]

275. Ceyda Erden Özsoy. Kuznets's Inverted U Hypothesis: The Relationship Between Economic Development and Ecological Footprint 242-251. [Crossref]

276. Laura Policardo. Myopia of Governments and Optimality of Irreversible Pollution Accumulation 331-368. [Crossref]

277. Elif Nuroglu, Robert M. Kunst. Kuznets and Environmental Kuznets Curves for Developing Countries 175-188. [Crossref]

279. David I. Stern. The Environmental Kuznets Curve #. [Crossref]

281. Abid Rashid Gill, Kuperan K. Viswanathan, Sallahuddin Hassan. 2018. The Environmental Kuznets Curve (EKC) and the environmental problem of the day. Renewable and Sustainable Energy Reviews 81, 1636-1642. [Crossref]

282. Amran Md. Rasli, Muhammad Imran Qureshi, Aliyu Isah-Chikaji, Khalid Zaman, Mehbboob Ahmad. 2018. New toxics, race to the bottom and revised environmental Kuznets curve: The case of local and global pollutants. Renewable and Sustainable Energy Reviews 81, 3120-3130. [Crossref]

283. C.-Y. Cynthia Lin Lawell, Krishna P. Paudel, Mahesh Pandit. 2018. One shape does not fit all: A nonparametric instrumental variable approach to estimating the income–pollution relationship at the global Level. Water Resources and Economics 21, 3-16. [Crossref]

287. Ralph De Haas, Alexander A. Popov. 2018. Financial Development and Industrial Pollution. SSRN Electronic Journal . [Crossref]

288. Ralph De Haas, Alexander A. Popov. 2018. Financial Development and Industrial Pollution. SSRN Electronic Journal . [Crossref]

289. Ralph De Haas, Alexander A. Popov. 2018. Financial Development and Industrial Pollution. SSRN Electronic Journal . [Crossref]

297. Tobias Böhmelt. 2017. Employing the shared socioeconomic pathways to predict CO2 emissions. *Environmental Science & Policy* 75, 56-64. [Crossref]

303. Eckehard Rosenbaum. 2017. Green Growth—Magic Bullet or Damp Squib?. *Sustainability* 9:7, 1092. [Crossref]

305. Bianca Oehl, Lena Maria Schaffer, Thomas Bernauer. 2017. How to measure public demand for policies when there is no appropriate survey data?. *Journal of Public Policy* 37:2, 173–204. [Crossref]

310. Sujata Upgupta, Prasoon Singh. 2017. Impacts of Coal mining: a Review of Methods and Parameters Used in India. *Current World Environment* 12:1, 142-156. [Crossref]

312. Chad M. Baum, Christian Gross. 2017. Sustainability policy as if people mattered: developing a framework for environmentally significant behavioral change. *Journal of Bioeconomics* 19:1, 53-95. [Crossref]

321. Mohamed M. Mostafa. 2017. Concern For Global Warming In Six Islamic Nations: A Multilevel Bayesian Analysis. *Sustainable Development* 25:1, 63-76. [Crossref]

322. Stephan Ortmann. Introduction: The Environmental Challenges in Vietnam 1-34. [Crossref]

323. Elif Nuroglu, Robert M. Kunst. Kuznets and Environmental Kuznets Curves for Developing Countries 1-14. [Crossref]

324. Patrick Habiyaremye, Dan Ayebare, Seperia B. Wanyama. Job-Rotation, Utilization of Workshops, and Performance of SMEs: An Empirical Study from the Gasabo District in Rwanda 187-204. [Crossref]

325. Imad A. Moosa. Economic Growth as a Cause of Environmental Degradation: The Australian Experience 227-250. [Crossref]

326. Salvatore Bimonte, Arsenio Stabile. 2017. Land consumption and income in Italy: a case of inverted EKC. *Ecological Economics* 131, 36-43. [Crossref]

329. John Joshua. Introduction 1–9. [Crossref]

330. John Joshua. Economic Growth and Sustainable Economic Development 11–43. [Crossref]

340. Ernest Nti Acheampong, Mark Swilling, Kevin Urama. 2016. Developing a framework for supporting the implementation of integrated water resource management (IWRM) with a decoupling strategy. *Water Policy* 18:6, 1317-1333. [Crossref]

347. Boqiang Lin, Oluwasola E. Omoju, Ngozi M. Nwokeze, Jennifer U. Okonkwo, Ebenezer T. Megbowon. 2016. Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa?. *Journal of Cleaner Production* 133, 712-724. [Crossref]

349. John McCollough, Miao He, Arzu Tay Bayramoglu. 2016. Pollution Havens and Their Relationship to the Environmental Kuznets Curve: The Case of the us Tyre Industry. *Economic Affairs* 36:3, 258-272. [Crossref]

352. Xiaosheng Li, Xia Yan, Qingxian An, Ke Chen, Zhen Shen. 2016. The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint. *Natural Hazards* **83**:1, 233-252. [Crossref]

357. Xian-Liang Tian, Qi-Guang Guo, Chao Han, Najid Ahmad. 2016. Different extent of environmental information disclosure across Chinese cities: Contributing factors and correlation with local pollution. *Global Environmental Change* **39**, 244-257. [Crossref]

361. Aslan Alper, Gozbasi Onur. 2016. Environmental Kuznets curve hypothesis for sub-elements of the carbon emissions in China. *Natural Hazards* **82**:2, 1327-1340. [Crossref]

364. Jeffery S. McMullen, Benjamin J. Warnick. 2016. Should We Require Every New Venture to Be a Hybrid Organization?. *Journal of Management Studies* **53**:4, 630-662. [Crossref]

365. Kavi Bhalla, Dinesh Mohan. Understanding the Road Safety Performance of OECD Countries 1-15. [Crossref]

367. Tobias S. Schmidt, Joern Huenteler. 2016. Anticipating industry localization effects of clean technology deployment policies in developing countries. *Global Environmental Change* **38**, 8-20. [Crossref]

368. Zhang Yu. How to improve the environmental quality of China from the perspective of fiscal policy? 213-215. [Crossref]

369. Piero Esposito, Fabrizio Patriarca, Luigi Perini, Luca Salvati. 2016. Land degradation, economic growth and structural change: evidences from Italy. *Environment, Development and Sustainability* **18**:2, 431-448. [Crossref]
370. Dakshina G. De Silva, Timothy P. Hubbard, Anita R. Schiller. 2016. Entry and Exit Patterns of “Toxic” Firms. *American Journal of Agricultural Economics* 98:3, 881-909. [Crossref]

373. Shujing Yue, Yang Yang, Yaoyu Hu. 2016. Does Foreign Direct Investment Affect Green Growth? Evidence from China’s Experience. *Sustainability* 8:2, 158. [Crossref]

375. Thomas Sommerer, Sijeong Lim. 2016. The environmental state as a model for the world? An analysis of policy repertoires in 37 countries. *Environmental Politics* 25:1, 92-115. [Crossref]

376. Katsuhsia Uchiyama. Environmental Kuznets Curve Hypothesis 11-29. [Crossref]

378. Leonid G. Melnyk, Oleksandr V. Kubatko, Oleksandra V. Kubatko. 2016. Were Ukrainian regions too different to start interregional confrontation: economic, social and ecological convergence aspects?. *Economic Research–Ekonomiska Istraživanja* 29:1, 573-582. [Crossref]

384. Tonmoy Chatterjee, Soumyananda Dinda. Climate Change, Human Health and Some Economic Issues 26-41. [Crossref]

385. Tonmoy Chatterjee, Soumyananda Dinda. Climate Change, Human Health and Some Economic Issues 1971-1986. [Crossref]

386. Amarendra Pratap Singh, K. Narayanan. 2015. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. *Environment, Development and Sustainability* 17:6, 1509-1525. [Crossref]

391. Thomas Bernauer, Quynh Nguyen. 2015. Free Trade and/or Environmental Protection?. *Global Environmental Politics* **15**:4, 105-129. [Crossref]

398. Xiaobing Zhao, Ding Du. 2015. Forecasting carbon dioxide emissions. *Journal of Environmental Management* **160**, 39-44. [Crossref]

400. Lorena M. D’Agostino. 2015. How MNEs respond to environmental regulation: integrating the Porter hypothesis and the pollution haven hypothesis. *Economia Politica* **32**:2, 245-269. [Crossref]

402. Pablo Rodrigo, Pablo Muñoz, Alexander Wright. 2015. Transitions dynamics in context: key factors and alternative paths in the sustainable development of nations. *Journal of Cleaner Production* **94**, 221-234. [Crossref]

404. Adrienne M. Ohler. 2015. Factors affecting the rise of renewable energy in the U.S.: Concern over environmental quality or rising unemployment?. *The Energy Journal* **36**:2. [Crossref]

406. Michael Greenstone, B. Kelsey Jack. 2015. Envirodeconomics: A Research Agenda for an Emerging Field. *Journal of Economic Literature* **53**:1, 5-42. [Abstract] [View PDF article] [PDF with links]

409. Ednilson Sebastião de Ávila, Eliezer Martins Diniz. 2015. Evidências sobre curva ambiental de Kuznets e convergência das emissões. *Estudos Econômicos (São Paulo)* **45**:1, 97-126. [Crossref]
412. Douglas K. Bardsley. 2015. Limits to adaptation or a second modernity? Responses to climate change risk in the context of failing socio-ecosystems. *Environment, Development and Sustainability* 17:1, 41-55. [Crossref]
415. C.M. Hall, B. Amelung, S. Cohen, E. Eijgelaar, S. Gössling, J. Higham, R. Leemans, P. Peeters, Y. Ram, D. Scott. 2015. On climate change skepticism and denial in tourism. *Journal of Sustainable Tourism* 23:1, 4-25. [Crossref]
417. Tommaso Luzzati. Kuznets Curves 144-149. [Crossref]
418. Lifeng Wu, Sifeng Liu, Dinglin Liu, Zhigeng Fang, Haiyan Xu. 2015. Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model. *Energy* 79, 489-495. [Crossref]
419. David I. Stern. 2015. The Environmental Kuznets Curve after 25 Years. *SSRN Electronic Journal*. [Crossref]
422. Giovanni Bella, Carla Massidda, Paolo Mattana. 2014. The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries. *Journal of Policy Modeling* 36:6, 970-985. [Crossref]
423. Graeme S. Cumming, Andreas Buerkert, Ellen M. Hoffmann, Eva Schlecht, Stephan von Cramon-Taubadel, Teja Tscharntke. 2014. Implications of agricultural transitions and urbanization for ecosystem services. *Nature* 515:7525, 50-57. [Crossref]
425. Christopher B. Barrett, Mark A. Constas. 2014. Toward a theory of resilience for international development applications. *Proceedings of the National Academy of Sciences* 111:40, 14625-14630. [Crossref]
Shiguo Ma, Lei Shi. 2014. The Micro-foundations of the Environmental Kuznets Curve. *Fudan Journal of the Humanities and Social Sciences* 7:3, 471-482. [Crossref]

Jie Liu, Yunpeng Li, Rehan Sadiq, Yong Deng. 2014. Quantifying influence of weather indices on PM $$_{2.5}$$ based on relation map. *Stochastic Environmental Research and Risk Assessment* 28:6, 1323-1331. [Crossref]

Xinye Zheng, Yihua Yu, Jing Wang, Huihui Deng. 2014. Identifying the determinants and spatial nexus of provincial carbon intensity in China: a dynamic spatial panel approach. *Regional Environmental Change* 14:4, 1651-1661. [Crossref]

Sung Eun Kim, Johannes Urpelainen. 2014. Technology Competition and International Co-operation: Friends or Foes?. *British Journal of Political Science* 44:3, 545-574. [Crossref]

Helen Kopnina. 2014. Consumption, waste and (un)sustainable development: reflections on the Dutch holiday of Queen’s day. *Environment Systems and Decisions* 34:2, 312-322. [Crossref]

Saahil Sundeep Waslekar. 2014. World Environmental Kuznets Curve and the Global Future. *Procedia - Social and Behavioral Sciences* 133, 310-319. [Crossref]

Eri Saikawa, Johannes Urpelainen. 2014. Environmental standards as a strategy of international technology transfer. *Environmental Science & Policy* 38, 192-206. [Crossref]

CHING-YAO IRENE LAI, C.C. YANG. 2014. SCALE EFFECT VERSUS INDUCED POLICY RESPONSE IN THE ENVIRONMENTAL KUZNETS CURVE: THE CASE OF U.S. WATER POLLUTION. *Contemporary Economic Policy* 32:2, 435-450. [Crossref]

Helen Kopnina. 2014. Christmas tale of (un)sustainability: Reflecting on consumption and environmental awareness on the streets of Amsterdam. *Sustainable Cities and Society* 10, 65-71. [Crossref]

Kirill Borissov, Thierry Bréchet, Stéphane Lambrecht. Environmental Policy in a Dynamic Model with Heterogeneous Agents and Voting 37-60. [Crossref]

Klaus Dieter John, Michael Apel, Benjamin Häupl, Katharina Weiß. Wirtschaftswachstum und Nachhaltigkeit aus systemdynamischer Perspektive 139-175. [Crossref]

Debashish Chakraborty, Kakali Mukhopadhyay. Introduction 1-21. [Crossref]

Thomas Bernauer, Quynh Nguyen. 2014. Concern for the Environment and Individual Attitudes Towards International Trade in Developing Countries. *SSRN Electronic Journal*. [Crossref]

Christopher B. Barrett, Mark A Constas. 2014. Toward a Theory of Resilience for International Development Applications. *SSRN Electronic Journal*. [Crossref]

448. José Carlos Orihuela. 2013. Context matters: the significance of non-economic conditions for income–pollution relationships in Chile and Peru. *Journal of Environmental Studies and Sciences* 3:4, 391-403. [Crossref]

450. Sulan Chen. 2013. Environmental cooperation in the South China Sea: Factors, actors and mechanisms. *Ocean & Coastal Management* 85, 131-140. [Crossref]

452. Lan Xu, Xu Chun Wei. 2013. Empirical Research on China’s Environmental and Economic Development. *Advanced Materials Research* 869-870, 766-772. [Crossref]

455. Thomas Bernauer, Tobias Böhmelt. 2013. Are Economically “Kinder, Gentler Societies” also Greener?. *Environmental Science & Technology* 47:21, 11993–12001. [Crossref]

465. Chao Wang, Jiang Liu, Li Huang, Wei Li. 2013. Exploring the Relationship between Industrial Economic Growth and Environmental Pollution - An Empirical Analysis Based on Cointegration and Granger Causality Test. *Applied Mechanics and Materials* 423-426, 1377-1382. [Crossref]

470. Thomas Bernauer. 2013. Climate Change Politics. *Annual Review of Political Science* **16**:1, 421-448. [Crossref]

475. Danny T. Wang, Flora F. Gu, David K. Tse, Chi Kin (Bennett) Yim. 2013. When does FDI matter? The roles of local institutions and ethnic origins of FDI. *International Business Review* **22**:2, 450-465. [Crossref]

476. Frank Boons. Ecological Modernization and Industrial Ecology 388-402. [Crossref]

479. Christopher B. Barrett, Erwin H. Bulte, Paul Ferraro, Sven Wunder. Economic instruments for nature conservation 59-73. [Crossref]

480. Jia-qiang Mao, Jia-jia Wang, Kun Jing. Effect Analysis of FDI on the Construction Industry Competitiveness 521-529. [Crossref]

482. Valeria Andreoni. 2013. Can Economic Growth be Sustainable? The Case of EU27. *Journal of Global Policy and Governance* **1**:2, 185-195. [Crossref]

484. Helen Kopnina. 2013. An Exploratory Case Study of Dutch Children’s Attitudes Toward Consumption: Implications for Environmental Education. *The Journal of Environmental Education* **44**:2, 128-144. [Crossref]

485. Caroline Y. Jo, Lynn White. 2013. Polluted Air or Policy Advance in Hong Kong-Guangdong?. *Asian Politics & Policy* **5**:1, 77-106. [Crossref]
486. Mariana Conte Grand, Vanesa Valeria D’Elia. 2013. Using the Box-Cox Transformation to Approximate the Shape of the Relationship between CO2 Emissions and GDP: A Note. SSRN Electronic Journal. [Crossref]

489. Alexi Thompson. 2013. Accounting for Population in an EKC for Water Pollution. Journal of Environmental Protection 04:07, 147-150. [Crossref]

491. Mehdi Abbas. 2013. Libre-échange et changements climatiques : “soutien mutuel” ou divergence ?. Mondes en développement n° 162:2, 33. [Crossref]

493. Wen Shwo Fang, Stephen M. Miller, Chih-Chuan Yeh. 2012. The effect of ESCOs on energy use. Energy Policy 51, 558-568. [Crossref]

494. Roger Fouquet. 2012. The demand for environmental quality in driving transitions to low-polluting energy sources. Energy Policy 50, 138-149. [Crossref]

496. Qingsong Wang, Xueliang Yuan, Yanhua Lai, Chunyuan Ma, Wei Ren. 2012. Research on interactive coupling mechanism and regularity between urbanization and atmospheric environment: a case study in Shandong Province, China. Stochastic Environmental Research and Risk Assessment 26:7, 887-898. [Crossref]

501. Elizabeth A. Stanton. 2012. Modeling pessimism: Does climate Stabilization require a failure of development?. Environmental Development 3, 65-76. [Crossref]

505. Gabriele Spilker. 2012. Helpful Organizations: Membership in Inter-Governmental Organizations and Environmental Quality in Developing Countries. *British Journal of Political Science* **42**:2, 345-370. [Crossref]

506. Markus Kitzmueller, Jay Shimshack. 2012. Economic Perspectives on Corporate Social Responsibility. *Journal of Economic Literature* **50**:1, 51-84. [Abstract] [View PDF article] [PDF with links]

508. Hossein Mirshojaeian Hosseini, Shinji Kaneko. 2012. Causality between pillars of sustainable development: Global stylized facts or regional phenomena?. *Ecological Indicators* **14**:1, 197-201. [Crossref]

510. Elizabeth A. Stanton. 2012. The Tragedy of Maldistribution: Climate, Sustainability, and Equity. *Sustainability* **4**:3, 394-411. [Crossref]

511. Christoph Schmitz, Anne Biewald, Hermann Lotze-Campen, Alexander Popp, Jan Philipp Dietrich, Benjamin Bodirsky, Michael Krause, Isabelle Weindl. 2012. Trading more food: Implications for land use, greenhouse gas emissions, and the food system. *Global Environmental Change* **22**:1, 189-209. [Crossref]

512. Peter Preisendörfer, Andreas Dickmann. Umweltprobleme 1198-1217. [Crossref]

513. Matthew A. Shapiro. Long-Run Protection: Determining Key Features of Growth and Sustainability in Northeast Asia 259-278. [Crossref]

514. Olaf Weber, Marco Mansfeld, Eric Schirrmann. The Financial Performance of RI Funds After 2000 75-91. [Crossref]

515. Timothy J. Tyrrell, Robert J. Johnston. The Role of Tourism in Sustainable Communities 565-582. [Crossref]

518. Rinku Roy Chowdhury, Emilio F. Moran. 2012. Turning the curve: A critical review of Kuznets approaches. *Applied Geography* **32**:1, 3-11. [Crossref]

519. Rachel S. Franklin, Matthias Ruth. 2012. Growing up and cleaning up: The environmental Kuznets curve redux. *Applied Geography* **32**:1, 29-39. [Crossref]

520. Robert Y. Shum. 2012. Effects of economic recession and local weather on climate change attitudes. *Climate Policy* **12**:1, 38-49. [Crossref]

521. Roberta de Santis. 2012. Trade, FDI, Growth and Biodiversity: An Empirical Analysis for the Main OECD Countries. *SSRN Electronic Journal*. [Crossref]

523. Wen-Shwo Fang, Stephen M. Miller, Chih-Chuan Yeh. 2012. The Effect of ESCOs on Energy Use. *SSRN Electronic Journal*. [Crossref]

526. Mohamed M. Mostafa. Modeling the Ecological Footprint of Nations via Evolutionary Computation and Machine Learning Models 2081-2100. [Crossref]
527. Jean-Michel Larivière, Jie He. 2012. L’impact de la taille des firmes industrielles sur la courbe de Kuznets environnementale : le cas des émissions de SO2 en Chine. L’Actualité économique 88:1, 5-36. [Crossref]
528. Désiré Avom, Gislain Stéphane Gandjon Fankem. 2012. Le développement durable constitue-t-il un élément d’attractivité territoriale ? Application aux pays de l’Afrique Centrale. Marché et organisations 16:2, 77. [Crossref]
529. Mariana Zilio, Marina Recalde. 2011. GDP and environment pressure: The role of energy in Latin America and the Caribbean. Energy Policy 39:12, 7941-7949. [Crossref]
533. Roger Fouquet. 2011. Long run trends in energy-related external costs. Ecological Economics 70:12, 2380-2389. [Crossref]
535. 2011 People, Projects, and Programs. Sustainability: The Journal of Record 4:5, 216-221. [Crossref]
536. Ing-Marie Gren, Monica Campos. 2011. Development and non-indigenous species at the global scale. Regional Environmental Change 11:3, 593-601. [Crossref]
540. Jing You. 2011. China’s energy consumption and sustainable development: Comparative evidence from GDP and genuine savings. Renewable and Sustainable Energy Reviews 15:6, 2984-2989. [Crossref]
543. Ashley Murray, Gayathri Devi Mekala, Xia Chen. 2011. Evolving policies and the roles of public and private stakeholders in wastewater and faecal-sludge management in India, China and Ghana. Water International 36:4, 491-504. [Crossref]

546. Weihua Du. Interrelations between environmental pollution, economic growth and population distribution in gradient economic zones in China 6064-6067. [Crossref]

548. ###. 2011. A Political Economic Analysis of Environmental Policy, Redistributive Policy, and Economic Growth. *KDI Journal of Economic Policy* 33:2, 145-175. [Crossref]

551. Zhu Liu, Yong Geng, Bing Xue. Notice of Retraction: The Relationship between Pollution Emission and the Economy: An Eco-Efficiency Analysis in Industrial Waste Water Discharge in China 1-4. [Crossref]

553. Gustavo Inácio de Moraes, Mauricio Aguiar Serra. 2011. O modelo IS-LM-EE para economias abertas e distinções dos efeitos para as economias nacionais. *Economia e Sociedade* 20:1, 53-78. [Crossref]

554. Yu-wai Li, Bo Miao, Graeme Lang. 2011. The Local Environmental State in China: A Study of County-Level Cities in Suzhou. *The China Quarterly* 205, 115-132. [Crossref]

555. R. MacDermott, A. Basuchoudhary, J. Bang. Trade, Trade Agreements and the Environment 394-399. [Crossref]

558. Michaël Aklin. 2011. Trade, Development & the Environment: The Diffusion of Pollution. SSRN Electronic Journal. [Crossref]

566. Todd L. Matthews. 2010. THE ENDURING CONFLICT OF “JOBS VERSUS THE ENVIRONMENT”: LOCAL POLLUTION HAVENS AS AN INTEGRATIVE EMPIRICAL MEASURE OF ECONOMY VERSUS ENVIRONMENT. *Sociological Spectrum* 31:1, 59-85. [Crossref]

567. John Quiggin. 2010. Agriculture and global climate stabilization: a public good analysis. *Agricultural Economics* 41, 121-132. [Crossref]

569. Giovanni Immordino, Marco Pagano. 2010. Legal Standards, Enforcement, and Corruption. *Journal of the European Economic Association* 8:5, 1104-1132. [Crossref]

571. Mohamed M. Mostafa. 2010. A Bayesian approach to analyzing the ecological footprint of 140 nations. *Ecological Indicators* 10:4, 808-817. [Crossref]

572. Surender Kumar, Shunsuke Managi. 2010. Environment and productivities in developed and developing countries: The case of carbon dioxide and sulfur dioxide. *Journal of Environmental Management* 91:7, 1580-1592. [Crossref]

574. Ioan Ciumasu, Naela Costica. Impacts of Air Pollution on the Ecosystem and Human Health 447-492. [Crossref]

578. Aaron Kearsley, Mary Riddel. 2010. A further inquiry into the Pollution Haven Hypothesis and the Environmental Kuznets Curve. *Ecological Economics* 69:4, 905-919. [Crossref]

582. Zhong wu Li, Qi Zhang, Yong Fang, Xiao cong Yang, Qing shui Yuan. 2010. Examining social-economic factors in spatial and temporal change of water quality in red soil hilly region of South China: a case study in Hunan Province. *International Journal of Environment and Pollution* 42:1/2/3, 184. [Crossref]

591. JOHANNA ETNER, MEGLENA JELEVA, PIERRE-ANDRE JOUVET. 2009. PESSIMISM OR OPTIMISM: A JUSTIFICATION TO VOLUNTARY CONTRIBUTIONS TOWARD ENVIRONMENTAL QUALITY*. *Australian Economic Papers* 48:4, 308–319. [Crossref]

592. Peter M. Madsen. 2009. Does Corporate Investment Drive a “Race to the Bottom” in Environmental Protection? A Reexamination of the Effect of Environmental Regulation on Investment. *Academy of Management Journal* 52:6, 1297-1318. [Crossref]

597. Yoshiaki Tsuzuki. 2009. Comparison of pollutant discharge per capita (PDC) and its relationships with economic development: An indicator for ambient water quality improvement as well as the Millennium Development Goals (MDGs) sanitation indicator. *Ecological Indicators* 9:5, 971–981. [Crossref]

620. LUCAS BRETSCHGER, KAREN PITTEL. 2008. From time zero to infinity: transitional and long-run dynamics in capital–resource economies. *Environment and Development Economics* 13:06, 673. [Crossref]

624. Noh-Sun Kwark, ##. 2008. Determinants of Income Distribution Effects of Free Trade Agreement and Kuznets Curve. *KUKJE KYUNGJE YONGU* 14:2, 77-100. [Crossref]

630. Stephen Morse. 2008. On the use of headline indices to link environmental quality and income at the level of the nation state. *Applied Geography* 28:2, 77-95. [Crossref]

633. Olaf Weber, Roland W. Scholz, Georg Michalik. 2008. Incorporating sustainability criteria into credit risk management. *Business Strategy and the Environment* 21, n/a-n/a. [Crossref]

638. Shingo OHKUMA, Hideo NODA. 2008. The Environmental Kuznets Curve and Convergence of Sulfur Emissions in OECD Countries: Analysis Based on the Green Solow Model. *Studies in Regional Science 38*:1, 177-190. [Crossref]

642. Alain Karsenty, Romain Pirard. 2007. Changement climatique : faut-il récompenser la « déforestation évitée » ?. *Natures Sciences Sociétés 15*:4, 357-369. [Crossref]

643. Shih-Ying Wu, Po-Young Chu, Tzu-Yar Liu. 2007. DETERMINANTS OF A FIRM’S ISO 14001 CERTIFICATION: AN EMPIRICAL STUDY OF TAIWAN. *Pacific Economic Review 12*:4, 467-487. [Crossref]

644. MARZIO GALEOTTI. 2007. ECONOMIC GROWTH AND THE QUALITY OF THE ENVIRONMENT: TAKING STOCK. *Environment, Development and Sustainability 9*:4, 427-454. [Crossref]

647. Mary E. Davis. 2007. US Environmental Politics: A Study of State Toxic Metal Water Quality Standards. *Journal of Environmental Policy & Planning 9*:2, 143-163. [Crossref]

649. Xiaoli Liu, Gerhard K. Heilig, Junmiao Chen, Mikko Heino. 2007. Interactions between economic growth and environmental quality in Shenzhen, China's first special economic zone. *Ecological Economics 62*:3-4, 559-570. [Crossref]

652. Roberto Ezcurra. 2007. Is there cross-country convergence in carbon dioxide emissions?. *Energy Policy 35*:2, 1363-1372. [Crossref]

653. Hannes Egli, Thomas M. Steger. 2007. A Dynamic Model of the Environmental Kuznets Curve: Turning Point and Public Policy. *Environmental and Resource Economics 36*:1, 15-34. [Crossref]

654. Thomas M. Steger, Hannes Egli. A Dynamic Model of the Environmental Kuznets Curve: Turning Point and Public Policy 17-34. [Crossref]

656. Yael Meroz, Andrea Morone, Piergiuseppe Morone. 2007. Eliciting Environmental Preferences of Ghanaians: An Experimental Approach. SSRN Electronic Journal . [Crossref]

658. Bernard Sinclair-Desgagné. 2007. Le développement durable. Gestion 32:4, 46. [Crossref]

660. Sabrina Auci, Leonardo Becchetti. 2006. The instability of the adjusted and unadjusted environmental Kuznets curves. Ecological Economics 60:1, 282-298. [Crossref]

661. Yufu Zhang, Satoshi Tachibana, Shin Nagata. 2006. Impact of socio-economic factors on the changes in forest areas in China. Forest Policy and Economics 9:1, 63-76. [Crossref]

663. Susmita Dasgupta, Kirk Hamilton, Kiran D. Pandey, David Wheeler. 2006. Environment During growth: Accounting for governance and vulnerability. World Development 34:9, 1597-1611. [Crossref]

666. Shunsuke Managi. 2006. Are there increasing returns to pollution abatement? Empirical analytics of the Environmental Kuznets Curve in pesticides. Ecological Economics 58:3, 617-636. [Crossref]

668. David I. Stern. 2006. Reversal of the trend in global anthropogenic sulfur emissions. Global Environmental Change 16:2, 207-220. [Crossref]

671. Peter Gordon. 2006. Sustainability planning: first, do no harm. Property Management 24:2, 132-143. [Crossref]

672. David Bishai, Asma Quresh, Prashant James, Abdul Ghaffar. 2006. National road casualties and economic development. Health Economics 15:1, 65-81. [Crossref]

674. Marzio Galeotti, Matteo Manera, Alessandro Lanza. 2006. On the Robustness of Robustness Checks of the Environmental Kuznets Curve. SSRN Electronic Journal . [Crossref]

675. Luisito Bertinelli, Eric Strobl, Benteng Zou. 2006. Polluting Technologies and Sustainable Economic Development. SSRN Electronic Journal . [Crossref]

683. Edward B. Barbier. *Natural Resources and Economic Development* 80. [Crossref]

686. MARY E. DAVIS. 2005. ENVIRONMENTAL POLITICS IN THE US: A STUDY OF STATE SULFUR DIOXIDE STANDARDS. *Journal of Environmental Assessment Policy and Management* 07:03, 331-354. [Crossref]

689. ANTON NAHMAN, GEOFF ANTROBUS. 2005. THE ENVIRONMENTAL KUZNETS CURVE: A LITERATURE SURVEY. *The South African Journal of Economics* 73:1, 105-120. [Crossref]

693. Neil Edwards, Hubert Greppin, Alain Haurie, Laurent Viguier. Linking Climate and Economic Dynamics 1-34. [Crossref]

694. Anastasios Xepapadeas. Chapter 23 Economic growth and the environment 1219-1271. [Crossref]

710. David I. Stern. Economic Growth and Energy 35-51. [Crossref]

711. David I. Stern. Environmental Kuznets Curve 517-525. [Crossref]

713. Shanti Gamper-Rabindran, Shreyasi Jha. 2004. Environmental Impact of India’s Trade Liberalization. *SSRN Electronic Journal*. [Crossref]

717. Roger Perman, David I. Stern. 2003. Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. *Australian Journal of Agricultural and Resource Economics* 47:3, 325-347. [Crossref]

721. William F. Hyde. Limitations of Sustainable Forest Management: An Economics Perspective 193-210. [Crossref]

723. David M. Bishai, Yung-Ting Kung. Macroeconomics 169-191. [Crossref]

724. Brent Swallow, Ruth Meinzen-Dick. Payment for Environmental Services: Interactions with Property Rights and Collective Action 243-265. [Crossref]

725. Kanwalroop Kathy Dhanda, Ronald Paul Hill. Consumption and Environmental Degradation: A Long-Term View 297-317. [Crossref]

726. Folorunso Sunday Ayadi. An Empirical Investigation of Environmental Kuznets Curve in Nigeria 302-310. [Crossref]

727. Mohamed M. Mostafa. Modeling the Ecological Footprint of Nations via Evolutionary Computation and Machine Learning Models 18-37. [Crossref]