Toward a New Conception of the Environment-Competitiveness Relationship

Michael E. Porter and Claas van der Linde

The relationship between environmental goals and industrial competitiveness has normally been thought of as involving a tradeoff between social benefits and private costs. The issue was how to balance society’s desire for environmental protection with the economic burden on industry. Framed this way, environmental improvement becomes a kind of arm-wrestling match. One side pushes for tougher standards; the other side tries to beat the standards back.

Our central message is that the environment-competitiveness debate has been framed incorrectly. The notion of an inevitable struggle between ecology and the economy grows out of a static view of environmental regulation, in which technology, products, processes and customer needs are all fixed. In this static world, where firms have already made their cost-minimizing choices, environmental regulation inevitably raises costs and will tend to reduce the market share of domestic companies on global markets.

However, the paradigm defining competitiveness has been shifting, particularly in the last 20 to 30 years, away from this static model. The new paradigm of international competitiveness is a dynamic one, based on innovation. A body of research first published in The Competitive Advantage of Nations has begun to address these changes (Porter, 1990). Competitiveness at the industry level arises from superior productivity, either in terms of lower costs than rivals or the ability to offer products

Michael E. Porter is the C. Roland Christensen Professor of Business Administration, Harvard Business School, Boston, Massachusetts. Claas van der Linde is on the faculty of the International Management Research Institute of St. Gallen University, St. Gallen, Switzerland.
with superior value that justify a premium price.1 Detailed case studies of hundreds of industries, based in dozens of countries, reveal that internationally competitive companies are not those with the cheapest inputs or the largest scale, but those with the capacity to improve and innovate continually. (We use the term innovation broadly, to include a product’s or service’s design, the segments it serves, how it is produced, how it is marketed and how it is supported.) Competitive advantage, then, rests not on static efficiency nor on optimizing within fixed constraints, but on the capacity for innovation and improvement that shift the constraints.

This paradigm of dynamic competitiveness raises an intriguing possibility: in this paper, we will argue that properly designed environmental standards can trigger innovation that may partially or more than fully offset the costs of complying with them. Such “innovation offsets,” as we call them, can not only lower the net cost of meeting environmental regulations, but can even lead to absolute advantages over firms in foreign countries not subject to similar regulations. Innovation offsets will be common because reducing pollution is often coincident with improving the productivity with which resources are used. In short, firms can actually benefit from properly crafted environmental regulations that are more stringent (or are imposed earlier) than those faced by their competitors in other countries. By stimulating innovation, strict environmental regulations can actually enhance competitiveness.

There is a legitimate and continuing controversy over the social benefits of specific environmental standards, and there is a huge benefit-cost literature. Some believe that the risks of pollution have been overstated; others fear the reverse. Our focus here is not on the social benefits of environmental regulation, but on the private costs. Our argument is that whatever the level of social benefits, these costs are far higher than they need to be. The policy focus should, then, be on relaxing the tradeoff between competitiveness and the environment rather than accepting it as a given.

The Link from Regulation to Promoting Innovation

It is sometimes argued that companies must, by the very notion of profit seeking, be pursuing all profitable innovations. In the metaphor economists often cite, $10 bills will never be found on the ground because someone would have already picked them up. In this view, if complying with environmental regulation can be profitable, in the sense that a company can more than offset the cost of compliance, then why is such regulation necessary?

1 At the industry level, the meaning of competitiveness is clear. At the level of a state or nation, however, the notion of competitiveness is less clear because no nation or state is, or can be, competitive in everything. The proper definition of competitiveness at the aggregate level is the average productivity of industry or the value created per unit of labor and per dollar of capital invested. Productivity depends on both the quality and features of products (which determine their value) and the efficiency with which they are produced.
The possibility that regulation might act as a spur to innovation arises because the world does not fit the Panglossian belief that firms always make optimal choices. This will hold true only in a static optimization framework where information is perfect and profitable opportunities for innovation have already been discovered, so that profit-seeking firms need only choose their approach. Of course, this does not describe reality. Instead, the actual process of dynamic competition is characterized by changing technological opportunities coupled with highly incomplete information, organizational inertia and control problems reflecting the difficulty of aligning individual, group and corporate incentives. Companies have numerous avenues for technological improvement, and limited attention.

Actual experience with energy-saving investments illustrates that in the real world, $10 bills are waiting to be picked up. As one example, consider the “Green Lights” program of the Environmental Protection Agency. Firms volunteering to participate in this program pledge to scrutinize every avenue of electrical energy consumption. In return, they receive advice on efficient lighting, heating and cooling operations. When the EPA collected data on energy-saving lighting upgrades reported by companies as part of the Green Lights program, it showed that nearly 80 percent of the projects had paybacks of two years or less (DeCanio, 1993). Yet only after companies became part of the program, and benefitted from information and cajoling from the EPA, were these highly profitable projects carried out. This paper will present numerous other examples of where environmental innovation produces net benefits for private companies.2

We are currently in a transitional phase of industrial history where companies are still inexperienced in dealing creatively with environmental issues. The environment has not been a principal area of corporate or technological emphasis, and knowledge about environmental impacts is still rudimentary in many firms and industries, elevating uncertainty about innovation benefits. Customers are also unaware of the costs of resource inefficiency in the packaging they discard, the scrap value they forego and the disposal costs they bear. Rather than attempting to innovate in every direction at once, firms in fact make choices based on how they perceive their competitive situation and the world around them. In such a world, regulation can be an important influence on the direction of innovation, either for better or for worse. Properly crafted environmental regulation can serve at least six purposes.

First, regulation signals companies about likely resource inefficiencies and potential technological improvements. Companies are still inexperienced in measuring their discharges, understanding the full costs of incomplete utilization of resources and toxicity, and conceiving new approaches to minimize discharges or

2 Of course, there are many nonenvironmental examples of where industry has been extremely slow to pick up available $10 bills by choosing new approaches. For example, total quality management programs only came to the United States and Europe decades after they had been widely diffused in Japan, and only after Japanese firms had devastated U.S. and European competitors in the marketplace. The analogy between searching for product quality and for environmental protection is explored later in this paper.
eliminate hazardous substances. Regulation rivets attention on this area of potential innovation.3

Second, regulation focused on information gathering can achieve major benefits by raising corporate awareness. For example, Toxics Release Inventories, which are published annually as part of the 1986 Superfund reauthorization, require more than 20,000 manufacturing plants to report their releases of some 320 toxic chemicals. Such information gathering often leads to environmental improvement without mandating pollution reductions, sometimes even at lower costs.

Third, regulation reduces the uncertainty that investments to address the environment will be valuable. Greater certainty encourages investment in any area.

Fourth, regulation creates pressure that motivates innovation and progress. Our broader research on competitiveness highlights the important role of outside pressure in the innovation process, to overcome organizational inertia, foster creative thinking and mitigate agency problems. Economists are used to the argument that pressure for innovation can come from strong competitors, demanding customers or rising prices of raw materials; we are arguing that properly crafted regulation can also provide such pressure.

Fifth, regulation levels the transitional playing field. During the transition period to innovation-based solutions, regulation ensures that one company cannot opportunistically gain position by avoiding environmental investments. Regulations provide a buffer until new technologies become proven and learning effects reduce their costs.

Sixth, regulation is needed in the case of incomplete offsets. We readily admit that innovation cannot always completely offset the cost of compliance, especially in the short term before learning can reduce the cost of innovation-based solutions. In such cases, regulation will be necessary to improve environmental quality.

Stringent regulation can actually produce greater innovation and innovation offsets than lax regulation. Relatively lax regulation can be dealt with incrementally and without innovation, and often with "end-of-pipe" or secondary treatment solutions. More stringent regulation, however, focuses greater company attention on discharges and emissions, and compliance requires more fundamental solutions, like reconfiguring products and processes. While the cost of compliance may rise with stringency, then, the potential for innovation offsets may rise even faster. Thus the net cost of compliance can fall with stringency and may even turn into a net benefit.

How Innovation Offsets Occur

Innovation in response to environmental regulation can take two broad forms. The first is that companies simply get smarter about how to deal with pollution

3 Regulation also raises the likelihood that product and process in general will incorporate environmental improvements.
once it occurs, including the processing of toxic materials and emissions, how to reduce the amount of toxic or harmful material generated (or convert it into salable forms) and how to improve secondary treatment. Molten Metal Technology, of Waltham, Massachusetts, for example, has developed a catalytic extraction process to process many types of hazardous waste efficiently and effectively. This sort of innovation reduces the cost of compliance with pollution control, but changes nothing else.

The second form of innovation addresses environmental impacts while simultaneously improving the affected product itself and/or related processes. In some cases, these "innovation offsets" can exceed the costs of compliance. This second sort of innovation is central to our claim that environmental regulation can actually increase industrial competitiveness.

Innovation offsets can be broadly divided into product offsets and process offsets. Product offsets occur when environmental regulation produces not just less pollution, but also creates better-performing or higher-quality products, safer products, lower product costs (perhaps from material substitution or less packaging), products with higher resale or scrap value (because of ease in recycling or disassembly) or lower costs of product disposal for users. Process offsets occur when environmental regulation not only leads to reduced pollution, but also results in higher resource productivity such as higher process yields, less downtime through more careful monitoring and maintenance, materials savings (due to substitution, reuse or recycling of production inputs), better utilization of by-products, lower energy consumption during the production process, reduced material storage and handling costs, conversion of waste into valuable forms, reduced waste disposal costs or safer workplace conditions. These offsets are frequently related, so that achieving one can lead to the realization of several others.

As yet, no broad tabulation exists of innovation offsets. Most of the work done in this area involves case studies, because case studies are the only vehicle currently available to measure compliance costs and both direct and indirect innovation benefits. This journal is not the place for a comprehensive listing of available case studies. However, offering some examples should help the reader to understand how common and plausible such effects are.

Innovation to comply with environmental regulation often improves product performance or quality. In 1990, for instance, Raytheon found itself required (by the Montreal Protocol and the U.S. Clean Air Act) to eliminate ozone-depleting chlorofluorocarbons (CFCs) used for cleaning printed electronic circuit boards after the soldering process. Scientists at Raytheon initially thought that complete elimination of CFCs would be impossible. However, they eventually adopted a new semiaqueous, terpene-based cleaning agent that could be reused. The new method proved to result in an increase in average product quality, which had occasionally been compromised by the old CFC-based cleaning agent, as well as lower operating costs (Raytheon, 1991, 1993). It would not have been adopted in the absence of environmental regulation mandating the phase-out of CFCs. Another example is the move by the Robbins Company (a jewelry company based in Attleboro,
Massachusetts) to a closed-loop, zero-discharge system for handling the water used in plating (Berube, Nash, Maxwell and Ehrenfeld, 1992). Robbins was facing closure due to violation of its existing discharge permits. The water produced by purification through filtering and ion exchange in the new closed-loop system was 40 times cleaner than city water and led to higher-quality plating and fewer rejects. The result was enhanced competitiveness.

Environmental regulations may also reduce product costs by showing how to eliminate costly materials, reduce unnecessary packaging or simplify designs. Hitachi responded to a 1991 Japanese recycling law by redesigning products to reduce disassembly time. In the process, the number of parts in a washing machine fell 16 percent, and the number of parts on a vacuum cleaner fell 30 percent. In this way, moves to redesign products for better recyclability can lead to fewer components and thus easier assembly.

Environmental standards can also lead to innovation that reduces disposal costs (or boost scrap or resale value) for the user. For instance, regulation that requires recyclability of products can lead to designs that allow valuable materials to be recovered more easily after disposal of the product. Either the customer or the manufacturer who takes back used products reaps greater value.

These have all been examples of product offsets, but process offsets are common as well. Process changes to reduce emissions frequently result in increases in product yields. At Ciba-Geigy's dyestuff plant in New Jersey, the need to meet new environmental standards caused the firm to reexamine its wastewater streams. Two changes in its production process—replacing iron with a different chemical conversion agent that did not result in the formation of solid iron sludge and process changes that eliminated the release of potentially toxic product into the wastewater stream—not only boosted yield by 40 percent but also eliminated wastes, resulting in annual cost savings of $740,000 (Dorfman, Muir and Miller, 1992).

Similarly, 3M discovered that in producing adhesives in batches that were transferred to storage tanks, one bad batch could spoil the entire contents of a tank. The result was wasted raw materials and high costs of hazardous waste disposal. 3M developed a new technique to run quality tests more rapidly on new batches. The new technique allowed 3M to reduce hazardous wastes by 10 tons per year at almost no cost, yielding an annual savings of more than $200,000 (Sheridan, 1992).

Solving environmental problems can also yield benefits in terms of reduced downtime. Many chemical production processes at DuPont, for example, require start-up time to stabilize and bring output within specifications, resulting in an initial period during which only scrap and waste is produced. Installing higher-quality monitoring equipment has allowed DuPont to reduce production interruptions and the associated wasteful production start-ups, thus reducing waste generation as well as downtime (Parkinson, 1990).

4 We should note that this plant was ultimately closed. However, the example described here does illustrate the role of regulatory pressure in process innovation.
Regulation can trigger innovation offsets through substitution of less costly materials or better utilization of materials in the process. For example, 3M faced new regulations that will force many solvent users in paper, plastic and metal coatings to reduce its solvent emissions 90 percent by 1995 (Boroughs and Carpenter, 1991). The company responded by avoiding the use of solvents altogether and developing coating products with safer, water-based solutions. At another 3M plant, a change from a solvent-based to a water-based carrier, used for coating tablets, eliminated 24 tons per year of air emissions. The $60,000 investment saved $180,000 in unneeded pollution control equipment and created annual savings of $15,000 in solvent purchases (Parkinson, 1990). Similarly, when federal and state regulations required that Dow Chemical close certain evaporation ponds used for storing and evaporating wastewater resulting from scrubbing hydrochloric gas with caustic soda, Dow redesigned its production process. By first scrubbing the hydrochloric acid with water and then caustic soda, Dow was able to eliminate the need for evaporation ponds, reduce its use of caustic soda, and capture a portion of the waste stream for reuse as a raw material in other parts of the plant. This process change cost $250,000 to implement. It reduced caustic waste by 6,000 tons per year and hydrochloric acid waste by 80 tons per year, for a savings of $2.4 million per year (Dorfman, Muir and Miller, 1992).

The Robbins Company's jewelry-plating system illustrates similar benefits. In moving to the closed-loop system that purified and recycled water, Robbins saved over $115,000 per year in water, chemicals, disposal costs, and lab fees and reduced water usage from 500,000 gallons per week to 500 gallons per week. The capital cost of the new system, which completely eliminated the waste, was $220,000, compared to about $500,000 for a wastewater treatment facility that would have brought Robbins' discharge into compliance only with current regulations.

At the Tobyhanna Army Depot, for instance, improvements in sandblasting, cleaning, plating and painting operations reduced hazardous waste generation by 82 percent between 1985 and 1992. That reduction saved the depot over $550,000 in disposal costs, and $400,000 in material purchasing and handling costs (PR Newswire, 1993).

Innovation offsets can also be derived by converting waste into more valuable forms. The Robbins Company recovered valuable precious metals in its zero discharge plating system. At Rhone-Poulenc's nylon plant in Chalampe, France, diacids (by-products that had been produced by an adipic acid process) used to be separated and incinerated. Rhone-Poulenc invested Fr 76 million and installed new equipment to recover and sell them as dye and tanning additives or coagulation agents, resulting in annual revenues of about Fr 20.1 million. In the United States, similar by-products from a Monsanto Chemical Company plant in Pensacola, Florida, are sold to utility companies who use them to accelerate sulfur dioxide removal during flue gas desulfurization (Basta and Vagi, 1988).

A few studies of innovation offsets do go beyond individual cases and offer some broader-based data. One of the most extensive studies is by INFORM, an environmental research organization. INFORM investigated activities to prevent
waste generation—so-called source reduction activities—at 29 chemical plants in California, Ohio and New Jersey (Dorfman, Muir and Miller, 1992). Of the 181 source-reduction activities identified in this study, only one was found to have resulted in a net cost increase. Of the 70 activities for which the study was able to document changes in product yield, 68 reported yield increases; the average yield increase for the 20 initiatives with specific available data was 7 percent. These innovation offsets were achieved with surprisingly low investments and very short payback periods. One-quarter of the 48 initiatives with detailed capital cost information required no capital investment at all; of the 38 initiatives with payback period data, nearly two-thirds were shown to have recouped their initial investments in six months or less. The annual savings per dollar spent on source reduction averaged $3.49 for the 27 activities for which this information could be calculated. The study also investigated the motivating factors behind the plant’s source-reduction activities. Significantly, it found that waste disposal costs were the most often cited, followed by environmental regulation.

To build a broader base of studies on innovation offsets to environmental regulation, we have been collaborating with the Management Institute for Environment and Business on a series of international case studies, sponsored by the EPA, of industries and entire sectors significantly affected by environmental regulation. Sectors studied include pulp and paper, paint and coatings, electronics manufacturing, refrigerators, dry cell batteries and printing inks (Bonifant and Ratcliffe, 1994; Bonifant 1994a,b; van der Linde, 1995a,b,c). Some examples from that effort have already been described here.

A solid body of case study evidence, then, demonstrates that innovation offsets to environmental regulation are common. Even with a generally hostile regulatory climate, which is not designed to encourage such innovation, these offsets can sometimes exceed the cost of compliance. We expect that such examples will proliferate as companies and regulators become more sophisticated and shed old mindsets.

Early-Mover Advantage in International Markets

World demand is moving rapidly in the direction of valuing low-pollution and energy-efficient products, not to mention more resource-efficient products with higher resale or scrap value. Many companies are using innovation to command price premiums for “green” products and open up new market segments. For example, Germany enacted recycling standards earlier than in most other

5 Of course, a list of case examples, however long, does not prove that companies can always innovate or substitute for careful empirical testing in a large cross-section of industries. Given our current ability to capture the true costs and often multifaceted benefits of regulatory-induced innovation, reliance on the weight of case study evidence is necessary. As we discuss elsewhere, there is no countervailing set of case studies that shows that innovation offsets are unlikely or impossible.
countries, which gave German firms an early-mover advantage in developing less packaging-intensive products, which have been warmly received in the marketplace. Scandinavian pulp and paper producers have been leaders in introducing new environmentally friendly production processes, and thus Scandinavian pulp and paper equipment suppliers such as Kamyr and Sunds have made major gains internationally in selling innovative bleaching equipment. In the United States, a parallel example is the development by Cummins Engine of low-emissions diesel engines for trucks, buses and other applications in response to U.S. environmental regulations. Its new competence is allowing the firm to gain international market share.

Clearly, this argument only works to the extent that national environmental standards anticipate and are consistent with international trends in environmental protection, rather than break with them. Creating expertise in cleaning up abandoned hazardous waste sites, as the U.S. Superfund law has done, does little to benefit U.S. suppliers if no other country adopts comparable toxic waste cleanup requirements. But when a competitive edge is attained, especially because a company's home market is sophisticated and demanding in a way that pressures the company to further innovation, the economic gains can be lasting.

Answering Defenders of the Traditional Model

Our argument that strict environmental regulation can be fully consistent with competitiveness was originally put forward in a short *Scientific American* essay (Porter, 1991; see also van der Linde, 1993). This essay received far more scrutiny than we expected. It has been warmly received by many, especially in the business community. But it has also had its share of critics, especially among economists (Jaffe, Peterson, Portney and Stavins, 1993, 1994; Oates, Palmer and Portney, 1993; Palmer and Simpson, 1993; Simpson, 1993; Schmalensee, 1993).

One criticism is that while innovation offsets are theoretically possible, they are likely to be rare or small in practice. We disagree. Pollution is the emission or discharge of a (harmful) substance or energy form into the environment. Fundamentally, it is a manifestation of economic waste and involves unnecessary, inefficient or incomplete utilization of resources, or resources not used to generate their highest value. In many cases, emissions are a sign of inefficiency and force a firm to perform non-value-creating activities such as handling, storage and disposal. Within the company itself, the costs of poor resource utilization are most obvious in incomplete material utilization, but are also manifested in poor process control, which generates unnecessary stored material, waste and defects. There are many other hidden costs of resource inefficiencies later in the life cycle of the product. Packaging discarded by distributors or customers, for example, wastes resources and adds costs. Customers bear additional costs when they use polluting products or products that waste energy. Resources are
also wasted when customers discard products embodying unused materials or when they bear the costs of product disposal.\(^6\)

As the many examples discussed earlier suggest, the opportunity to reduce cost by diminishing pollution should thus be the rule, not the exception. Highly toxic materials such as heavy metals or solvents are often expensive and hard to handle, and reducing their use makes sense from several points of view. More broadly, efforts to reduce pollution and maximize profits share the same basic principles, including the efficient use of inputs, substitution of less expensive materials and the minimization of unneeded activities.\(^7\)

A corollary to this observation is that scrap or waste or emissions can carry important information about flaws in product design or the production process. A recent study of process changes in 10 printed circuit board manufacturers, for example, found that 13 of 33 major changes were initiated by pollution control personnel. Of these, 12 resulted in cost reduction, eight in quality improvements and five in extension of production capabilities (King, 1994).

Environmental improvement efforts have traditionally overlooked the systems cost of resource inefficiency. Improvement efforts have focused on pollution control through better identification, processing and disposal of discharges or waste, an inherently costly approach. In recent years, more advanced companies and regulators have embraced the concept of pollution prevention, sometimes called source reduction, which uses material substitution, closed-loop processes and the like to limit pollution before it occurs.

But although pollution prevention is an important step in the right direction, ultimately companies and regulators must learn to frame environmental improvement in terms of resource productivity, or the efficiency and effectiveness with which companies and their customers use resources.\(^8\) Improving resource productivity within companies goes beyond eliminating pollution (and the cost of dealing with it) to lowering true economic cost and raising the true economic value of products. At the level of resource productivity, environmental improvement and competitiveness come together. The imperative for resource productivity rests on the private costs that companies bear because of pollution, not on mitigating pollution's social costs. In addressing these private costs, it highlights the opportunity costs of pollution—wasted resources, wasted efforts and diminished product value to the customer—not its actual costs.

\(^6\) At its core, then, pollution is a result of an intermediate state of technology or management methods. Apparent exceptions to the resource productivity thesis often prove the rule by highlighting the role of technology. Paper made with recycled fiber was once greatly inferior, but new de-inking and other technologies have made its quality better and better. Apparent tradeoffs between energy efficiency and emissions rest on incomplete combustion.

\(^7\) Schmalensee (1993) counters that NO\(_x\) emissions often result from thermodynamically efficient combustion. But surely this is an anomaly, not the rule, and may represent an intermediate level of efficiency.

\(^8\) One of the pioneering efforts to see environmental improvement this way is Joel Makower's (1993) book, *The E-Factor: The Bottom-Line Approach to Environmentally Responsible Business.*
This view of pollution as unproductive resource utilization suggests a helpful analogy between environmental protection and product quality measured by defects. Companies used to promote quality by conducting careful inspections during the production process, and then by creating a service organization to correct the quality problems that turned up in the field. This approach has proven misguided. Instead, the most cost-effective way to improve quality is to build it into the entire process, which includes design, purchased components, process technology, shipping and handling techniques and so forth. This method dramatically reduces inspection, rework and the need for a large service organization. (It also leads to the oft-quoted phrase, "quality is free.") Similarly, there is reason to believe that companies can enjoy substantial innovation offsets by improving resource productivity throughout the value chain instead of through dealing with the manifestations of inefficiency like emissions and discharges.

Indeed, corporate total quality management programs have strong potential also to reduce pollution and lead to innovation offsets. Dow Chemical, for example, has explicitly identified the link between quality improvement and environmental performance, by using statistical process control to reduce the variance in processes and lower waste (Sheridan, 1992).

A second criticism of our hypothesis is to point to the studies finding high costs of compliance with environmental regulation, as evidence that there is a fixed tradeoff between regulation and competitiveness. But these studies are far from definitive. Estimates of regulatory compliance costs prior to enactment of a new rule typically exceed the actual costs. In part, this is because such estimates are often self-reported by industries who oppose the rule, which creates a tendency to inflation. A prime example of this type of thinking was a statement by Lee Iacocca, then vice president at the Ford Motor Company, during the debate on the 1970 Clean Air Act. Iacocca warned that compliance with the new regulations would require huge price increases for automobiles, force U.S. automobile production to a halt after January 1, 1975, and "do irreparable damage to the U.S. economy" (Smith, 1992). The 1970 Clean Air Act was subsequently enacted, and Iacocca’s predictions turned out to be wrong. Similar dire predictions were made during the 1990 Clean Air Act debate; industry analysts predicted that burdens on the U.S. industry would exceed $100 billion. Of course, the reality has proven to be far less dramatic. In one study in the pulp and paper sector, actual costs of compliance were $4.00 to $5.50 per ton compared to original industry estimates of $16.40 (Bonson, McCubbin and Sprague, 1988).

Early estimates of compliance cost also tend to be exaggerated because they assume no innovation. Early cost estimates for dealing with regulations concerning emission of volatile compounds released during paint application held everything
else constant, assuming only the addition of a hood to capture the fumes from paint lines. Innovation that improved the paint’s transfer efficiency subsequently allowed not only the reduction of fumes but also paint usage. Further innovation in waterborne paint formulations without any VOC-releasing solvents made it possible to eliminate the need for capturing and treating the fumes altogether (Bonifant, 1994b). Similarly, early estimates of the costs of complying with a 1991 federal clean air regulation calling for a 98 percent reduction in atmospheric emissions of benzene from tar-storage tanks used by coal tar distillers initially assumed that tar-storage tanks would have to be covered by costly gas blankets. While many distillers opposed the regulations, Pittsburgh-based Aristech Chemical, a major distiller of coal tar, subsequently developed an innovative way to remove benzene from tar in the first processing step, thereby eliminating the need for the gas blanket and resulting in a saving of $3.3 million instead of a cost increase (PR Newswire, 1993).

Prices in the new market for trading allowances to emit SO_2 provide another vivid example. At the time the law was passed, analysts projected that the marginal cost of SO_2 controls (and, therefore, the price of an emission allowance) would be on the order of $300 to $600 (or more) per ton in Phase I and up to $1000 or more in Phase II. Actual Phase I allowance prices have turned out to be in the $170 to $250 range, and recent trades are heading lower, with Phase II estimates only slightly higher (after adjusting for the time value of money). In case after case, the differences between initial predictions and actual outcomes—especially after industry has had time to learn and innovate—are striking.

Econometric studies showing that environmental regulation raises costs and harms competitiveness are subject to bias, because net compliance costs are overestimated by assuming away innovation benefits. Jorgenson and Wilcoxen (1990), for example, explicitly state that they did not attempt to assess public or private benefits. Other often-cited studies that solely focus on costs, leaving out benefits, are Hazilla and Kopp (1990) and Gray (1987). By largely assuming away innovation effects, how could economic studies reach any other conclusion than they do?

Internationally competitive industries seem to be much better able to innovate in response to environmental regulation than industries that were uncompetitive to begin with, but no study measuring the effects of environmental regulation on industry competitiveness has taken initial competitiveness into account. In a study by Kalt (1988), for instance, the sectors where high environmental costs were associated with negative trade performance were ones such as ferrous metal mining, nonferrous mining, chemical and fertilizer manufacturing, primary iron and steel and primary nonferrous metals, industries where the United States suffers from dwindling raw material deposits, very high relative electricity costs, heavily subsidized foreign competitors and other disadvantages that have rendered them uncompetitive quite apart from environmental costs. Other sectors identified by Kalt

10 It should be observed that a strong correlation between environmental costs and industry competitiveness does not necessarily indicate causality. Omitting environmental benefits from regulation, and
as having incurred very high environmental costs can actually be interpreted as supporting our hypothesis. Chemicals, plastics and synthetics, fabric, yarn and thread, miscellaneous textiles, leather tanning, paints and allied products, and paperboard containers all had high environmental costs but displayed positive trade performance.

A number of studies have failed to find that stringent environmental regulation hurts industrial competitiveness. Meyer (1992, 1993) tested and refuted the hypothesis that U.S. states with stringent environmental policies experience weak economic growth. Leonard (1988) was unable to demonstrate statistically significant offshore movements by U.S. firms in pollution-intensive industries. Wheeler and Mody (1992) failed to find that environmental regulation affected the foreign investment decisions of U.S. firms. Repetto (1995) found that industries heavily affected by environmental regulations experienced slighter reductions in their share of world exports than did the entire American industry from 1970 to 1990. Using U.S. Bureau of Census Data of more than 200,000 large manufacturing establishments, the study also found that plants with poor environmental records are generally not more profitable than cleaner ones in the same industry, even controlling for their age, size and technology. Jaffe, Peterson, Portney and Stavins (1993) recently surveyed more than 100 studies and concluded there is little evidence to support the view that U.S. environmental regulation had a large adverse effect on competitiveness.

Of course, these studies offer no proof for our hypothesis, either. But it is striking that so many studies find that even the poorly designed environmental laws presently in effect have little adverse effect on competitiveness. After all, traditional approaches to regulation have surely worked to stifle potential innovation offsets and imposed unnecessarily high costs of compliance on industry (as we will discuss in greater detail in the next section). Thus, studies using actual compliance costs to regulation are heavily biased toward finding that such regulation has a substantial cost. In no way do such studies measure the potential of well-crafted environmental regulations to stimulate competitiveness.

A third criticism of our thesis is that even if regulation fosters innovation, it will harm competitiveness by crowding out other potentially more productive investments or avenues for innovation. Given incomplete information, the limited reporting obvious (end-of-pipe) costs but not more difficult to identify or quantify innovation benefits can actually obscure a reverse causal relationship: industries that were uncompetitive in the first place may well be less able to innovate in response to environmental pressures, and thus be prone to end-of-pipe solutions whose costs are easily measured. In contrast, competitive industries capable of addressing environmental problems in innovative ways may report a lower compliance cost. Gray and Shadbegian (1993), another often-mentioned study, suffers from several of the problems discussed here. The article uses industry-reported compliance costs and does not control for plant technology vintage or the extent of other productivity-enhancing investments at the plant. High compliance costs may well have been borne in old, inefficient plants where firms opted for secondary treatment rather than innovation. Moreover, U.S. producers may well have been disadvantaged in innovating given the nature of the U.S. regulatory process—this seems clearly to have been the case in pulp and paper, one of the industries studied by the Management Institute for Environment and Business (MEB).
attention many companies have devoted to environmental innovations and the inherent linkage between pollution and resource productivity described earlier, it certainly is not obvious that this line of innovation has been so thoroughly explored that the marginal benefits of further investment would be low. The high returns evident in the studies we have cited support this view. Moreover, environmental investments represent only a small percentage of overall investment in all but a very few industries.12

A final counterargument, more caricature than criticism, is that we are asserting that any strict environmental regulation will inevitably lead to innovation and competitiveness. Of course, this is not our position. Instead, we believe that if regulations are properly crafted and companies are attuned to the possibilities, then innovation to minimize and even offset the cost of compliance is likely in many circumstances.

Designing Environmental Regulation to Encourage Innovation

If environmental standards are to foster the innovation offsets that arise from new technologies and approaches to production, they should adhere to three principles. First, they must create the maximum opportunity for innovation, leaving the approach to innovation to industry and not the standard-setting agency. Second, regulations should foster continuous improvement, rather than locking in any particular technology. Third, the regulatory process should leave as little room as possible for uncertainty at every stage. Evaluated by these principles, it is clear that U.S. environmental regulations have often been crafted in a way that deters innovative solutions, or even renders them impossible. Environmental laws and regulations need to take three substantial steps: phrasing environmental rules as goals that can be met in flexible ways; encouraging innovation to reach and exceed those goals; and administering the system in a coordinated way.

Clear Goals, Flexible Approaches

Environmental regulation should focus on outcomes, not technologies.13 Past regulations have often prescribed particular remediation technologies—like catalysts or scrubbers to address air pollution—rather than encouraging innovative approaches. American environmental law emphasized phrases like "best available technology," or "best available control technology." But legislating as if one par-

12 In paints and coatings, for example, environmental investments were 3.3 percent of total capital investment in 1989. According to Department of Commerce (1991) data (self-reported by industry), capital spending for pollution control and abatement outside of the chemical, pulp and paper, petroleum and coal, and primary metal sectors made up just 3.15 percent of total capital spending in 1991.

13 There will always be instances of extremely hazardous pollution requiring immediate action, where imposing a specific technology by command and control may be the best or only viable solution. However, such methods should be seen as a last resort.
ticular technology is always the "best" almost guarantees that innovation will not occur.

Regulations should encourage product and process changes to better utilize resources and avoid pollution early, rather than mandating end-of-pipe or secondary treatment, which is almost always more costly. For regulators, this poses a question of where to impose regulations in the chain of production from raw materials, equipment, the producer of the end product, to the consumer (Porter, 1985). Regulators must consider the technological capabilities and resources available at each stage, because it affects the likelihood that innovation will occur. With that in mind, the governing principle should be to regulate as late in the production chain as practical, which will normally allow more flexibility for innovation there and in upstream stages.

The EPA should move beyond the single medium (air, water and so on) as the principal way of thinking about the environment, toward total discharges or total impact. It should reorganize around affected industry clusters (including suppliers and related industries) to better understand a cluster's products, technologies and total set of environmental problems. This will foster fundamental rather than piecemeal solutions.

Seeding and Spreading Environmental Innovations

Where possible, regulations should include the use of market incentives, including pollution taxes, deposit-refund schemes and tradable permits. Such approaches often allow considerable flexibility, reinforce resource productivity, and also create incentives for ongoing innovation. Mandating outcomes by setting emission levels, while preferable to choosing a particular technology, still fails to provide incentives for continued and ongoing innovation and will tend to freeze a status quo until new regulations appear. In contrast, market incentives can encourage the introduction of technologies that exceed current standards.

The EPA should also promote an increased use of preemptive standards by industry, which appear to be an effective way of dealing with environmental

14 A first step in this direction is the EPA's recent adjustment of the timing of its air rule for the pulp and paper industry so that it will coincide with the rule for water, allowing industry to see the dual impact of the rules and innovate accordingly.

15 The EPA's regulatory cluster team concept, under which a team from relevant EPA offices approaches particular problems for a broader viewpoint, is a first step in this direction. Note, however, that of the 17 cluster groups formed, only four were organized around specific industries (petroleum refining, oil and gas production, pulp and paper, printing), while the remaining 13 focused on specific chemicals or types of pollution (U.S. Congress, Office of Technology Assessment, 1994).

16 Pollution taxes can be implemented as effluent charges on the quantity of pollution discharges, as user charges for public treatment facilities, or as product charges based on the potential pollution of a product. In a deposit-refund system, such product charges may be rebated if a product user disposes of it properly (for example, by returning a lead battery for recycling rather than sending it to a landfill). Under a tradable permit system, like that included in the recent Clean Air Act Amendments, a maximum amount of pollution is set, and rights equal to that cap are distributed to firms. Firms must hold enough rights to cover their emissions; firms with excess rights can sell them to firms who are short.
regulation. Preemptive standards, agreed to with EPA oversight to avoid collusion, can be set and met by industry to avoid government standards that might go further or be more restrictive on innovation. They are not only less costly, but allow faster change and leave the initiative for innovation with industry.

The EPA should play a major role in collecting and disseminating information on innovation offsets and their consequences, both here and in other countries. Limited knowledge about opportunities for innovation is a major constraint on company behavior. A good start can be the "clearinghouse" of information on source-reduction approaches that EPA was directed to establish by the Pollution Prevention Act (PPA) of 1990. The Green Lights and Toxics Release Inventories described at the start of this paper are other programs that involve collecting and spreading information. Yet another important initiative is the EPA program to compare emissions rates at different companies, creating methodologies to measure the full internal costs of pollution and ways of exchanging best practices and learning on innovative technologies.

Regulatory approaches can also function by helping create demand pressure for environmental innovation. One example is the prestigious German "Blue Angel" eco-label, introduced by the German government in 1977, which can be displayed only by products meeting very strict environmental criteria. One of the label's biggest success stories has been in oil and gas heating appliances: the energy efficiency of these appliances improved significantly when the label was introduced, and emissions of sulfur dioxide, carbon monoxide and nitrogen oxides were reduced by more than 30 percent.

Another point of leverage on the demand side is to harness the role of government as a demanding buyer of environmental solutions and environmentally friendly products. While there are benefits of government procurement of products such as recycled paper and retreaded tires, the far more leveraged role is in buying specialized environmental equipment and services. One useful change would be to alter the current practice of requiring bidders in competitive bid processes for government projects to only bid with "proven" technologies, a practice sure to hinder innovation.

The EPA can employ demonstration projects to stimulate and seed innovative new technologies, working through universities and industry associations. A good example is the project to develop and demonstrate technologies for super-efficient refrigerators, which was conducted by the EPA and researchers in government, academia and the private sector (United States Environmental Protection Agency, 1992). An estimated $1.7 billion was spent in 1992 by the federal government on environmental technology R&D, but only $70 million was directed toward research on pollution prevention (U.S. Congress, Office of Technology Assessment, 1994).

Incentives for innovation must also be built into the regulatory process itself. The current permitting system under Title V of the Clean Air Act Amendments, to

17 See Marron (1994) for a demonstration of the modest productivity gains likely from government procurement of standard items, although in a static model.
choose a negative example, requires firms seeking to change or expand their production process in a way that might impact air quality to revise their permit extensively, no matter how little the potential effect on air quality may be. This not only deters innovation, but drains the resources of regulators away from timely action on significant matters. On the positive side, the state of Massachusetts has initiated a program to waive permits in some circumstances, or promise an immediate permit, if a company takes a zero-discharge approach.

A final priority is new forums for settling regulatory issues that minimize litigation. Potential litigation creates enormous uncertainty; actual litigation burns resources. Mandatory arbitration, or rigid arbitration steps before litigation is allowed, would benefit innovation. There is also a need to rethink certain liability issues. While adequate safeguards must be provided against companies that recklessly harm citizens, there is a pressing need for liability standards that more clearly recognize the countervailing health and safety benefits of innovations that lower or eliminate the discharge of harmful pollutants.

Regulatory Coordination

Coordination of environmental regulation can be improved in at least three ways: between industry and regulators, between regulators at different levels and places in government, and between U.S. regulators and their international counterparts.

In setting environmental standards and regulatory processes to encourage innovation, substantive industry participation in setting standards is needed right from the beginning, as is common in many European countries. An appropriate regulatory process is one in which regulations themselves are clear, who must meet them is clear, and industry accepts the regulations and begins innovating to address them, rather than spending years attempting to delay or relax them. In our current system, by the time standards are finally settled and clarified, it is often too late to address them fundamentally, making secondary treatment the only alternative. We need to evolve toward a regulatory regime in which the EPA and other regulators make a commitment that standards will be in place for, say, five years, so that industry is motivated to innovate rather than adopt incremental solutions.

Different parts and levels of government must coordinate and organize themselves so that companies are not forced to deal with multiple parties with inconsistent desires and approaches. As a matter of regulatory structure, the EPA's proposed new Innovative Technology Council, being set up to advocate the development of new technology in every field of environmental policy, is a step in the right direction. Another unit in the EPA should be responsible for continued reengineering of the process of regulation to reduce uncertainty and minimize costs. Also, an explicit strategy is needed to coordinate and harmonize federal and state activities.18

18 The cluster-based approach to regulation discussed earlier should also help eliminate the practice of sending multiple EPA inspectors to the same plant who do not talk to one another, make conflicting
A final issue of coordination involves the relationship between U.S. environmental regulations and those in other countries. U.S. regulations should be in sync with regulations in other countries and, ideally, be slightly ahead of them. This will minimize possible competitive disadvantages relative to foreign competitors who are not yet subject to the standard, while at the same time maximizing export potential in the pollution control sector. Standards that lead world developments provide domestic firms with opportunities to create valuable early-mover advantages. However, standards should not be too far ahead of, or too different in character from, those that are likely to apply to foreign competitors, for this would lead industry to innovate in the wrong directions.

Critics may note, with some basis, that U.S. regulators may not be able to project better than firms what type of regulations, and resultant demands for environmental products and services, will develop in other nations. However, regulators would seem to possess greater resources and information than firms for understanding the path of regulation in other countries. Moreover, U.S. regulations influence the type and stringency of regulations in other nations, and as such help define demand in other world markets.

Imperatives for Companies

Of course, the regulatory reforms described here also seek to change how companies view environmental issues. Companies must start to recognize the environment as a competitive opportunity—not as an annoying cost or a postponable threat. Yet many companies are ill-prepared to carry out a strategy of environmental innovation that produces sizable compensating offsets.

For starters, companies must improve their measurement and assessment methods to detect environmental costs and benefits. Too often, relevant information is simply lacking. Typical is the case of a large producer of organic chemicals that retained a consulting firm to explore opportunities for reducing waste. The client thought it had 40 waste streams, but a careful audit revealed that 497 different demands and waste time and resources. The potential savings from cluster- and multimedia-oriented permitting and inspection programs appear to be substantial. During a pilot multimedia testing program called the Blackstone Project, the Massachusetts Department of Environmental Protection found that multimedia inspections required 50 percent less time than conventional inspections—which at that time accounted for nearly one-fourth of the department’s operating budget (Roy and Dillard, 1990).

For a more detailed perspective on changing company mindsets about competitiveness and environmentalism, see Porter and van der Linde (1995) in the *Harvard Business Review*.

Accounting methods that are currently being discussed in this context include “full cost accounting,” which attempts to assign all costs to specific products or processes, and “total cost accounting,” which goes a step further and attempts both to allocate costs more specifically and to include cost items beyond traditional concerns, such as indirect or hidden costs (like compliance costs, insurance, on-site waste management, operation of pollution control and future liability) and less tangible benefits (like revenue from enhanced company image). See White, Becker and Goldstein (1991), cited in U.S. Congress, Office of Technology Assessment (1994).
waste streams were actually present (Parkinson, 1990). Few companies analyze the true cost of toxicity, waste, discharges and the second-order impacts of waste and discharges on other activities. Fewer still look beyond the out-of-pocket costs of dealing with pollution to investigate the opportunity costs of the wasted resources or foregone productivity. How much money is going up the smokestack? What percentage of inputs are wasted? Many companies do not even track environmental spending carefully, or subject it to evaluation techniques typical for "normal" investments.

Once environmental costs are measured and understood, the next step is to create a presumption for innovation-based solutions. Discharges, scrap and emissions should be analyzed for insights about beneficial product design or process changes. Approaches based on treatment or handling of discharges should be accepted only after being sent back several times for reconsideration. The responsibility for environmental issues should not be delegated to lawyers or outside consultants except in the adversarial regulatory process, or even to internal specialists removed from the line organization, residing in legal, government or environmental affairs departments. Instead, environmental strategies must become a general management issue if the sorts of process and product redesigns needed for true innovation are to even be considered, much less be proposed and implemented.

Conclusion

We have found that economists as a group are resistant to the notion that even well-designed environmental regulations might lead to improved competitiveness. This hesitancy strikes us as somewhat peculiar, given that in other contexts, economists are extremely willing to argue that technological change has overcome predictions of severe, broadly defined environmental costs. A static model (among other flaws) has been behind many dire predictions of economic disaster and human catastrophe: from the predictions of Thomas Malthus that population would inevitably outstrip food supply; to the *Limits of Growth* (Meadows and Meadows, 1972), which predicted the depletion of the world's natural resources; to *The Population Bomb* (Ehrlich, 1968), which predicted that a quarter of the world's population would starve to death between 1973 and 1983. As economists are often eager to point out, these models failed because they did not appreciate the power of innovations in technology to change old assumptions about resource availability and utilization.

Moreover, the static mindset that environmentalism is inevitably costly has created a self-fulfilling gridlock, where both regulators and industry battle over every inch of territory. The process has spawned an industry of litigators and consultants, driving up costs and draining resources away from real solutions. It has been reported that four out of five EPA decisions are currently challenged in court (Clay, 1993, cited in U.S. Congress, Office of Technology Assessment, 1994). A study by the Rand Institute for Civil Justice found that 88 percent of the money paid out
between 1986 and 1989 by insurers on Superfund claims went to pay for legal and administrative costs, while only 12 percent were used for actual site cleanups (Acton and Dixon, 1992).

The United States and other countries need an entirely new way of thinking about the relationship between environment and industrial competitiveness—one closer to the reality of modern competition. The focus should be on relaxing the environment-competitiveness tradeoff rather than accepting and, worse yet, steepening it. The orientation should shift from pollution control to resource productivity. We believe that no lasting success can come from policies that promise that environmentalism will triumph over industry, nor from policies that promise that industry will triumph over environmentalism. Instead, success must involve innovation-based solutions that promote both environmentalism and industrial competitiveness.

References

Massachusetts Department of Environmental Protection, Daniel S. Greenbaum, Commissioner, interview, Boston, August 8, 1993.

Raytheon Inc., J. R. Pasquariello, Vice Presi-
dent Environmental Quality; Kenneth J. Tierney, Director Environmental and Energy Conservation; Frank A. Marino, Senior Corporate Environmental Specialist; interview, Lexington, Mass., April 4, 1993.

This article has been cited by:

13. GIULIO GUARINI, JOSÉ LUIS OREIRO. 2022. An ecological view of New Developmentalism: a proposal of integration. *Brazilian Journal of Political Economy* **42**:1, 244-255. [Crossref]
14. Zhenbing Yang, Qingquan Shi, Xiangqiu Lv, Qi Shi. 2022. Heterogeneous low-carbon targets and energy structure optimization: Does stricter carbon regulation really matter?. *Structural Change and Economic Dynamics* **60**, 329-343. [Crossref]
15. Xiaohua Sun, Yan Dong, Yun Wang, Junlin Ren. 2022. Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects. *Ecological Economics* **193**, 107288. [Crossref]

22. Guangjin Li, Qing Xue, Jiahong Qin. 2022. Environmental information disclosure and green technology innovation: Empirical evidence from China. *Technological Forecasting and Social Change* **176**, 121453. [Crossref]

23. Xiaoling Wang, Tianyue Zhang, Jatin Nathwani, Fangming Yang, Qinglong Shao. 2022. Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China’s iron & steel industry. *Technological Forecasting and Social Change* **176**, 121471. [Crossref]

33. Zhiqiang Liu, Yanyi Huang, Ying Huang, Yiping Amy Song, Ajay Kumar. 2022. How does one-sided versus two-sided customer orientation affect B2B platform’s innovation: Differential effects with top management team status. Journal of Business Research 141, 619-632. [Crossref]

35. Dongchun Xie, Xiaofeng Li, Di Zhou. 2022. Does environmental information disclosure increase firm exports?. Economic Analysis and Policy 73, 620-638. [Crossref]

36. Qin Yirong. 2022. Does environmental policy stringency reduce CO2 emissions? Evidence from high-polluted economies. Journal of Cleaner Production 341, 130648. [Crossref]

38. Nikhil Kant. 2022. An analytical study of stakeholders relevance based on their perceived preference in terms of climate strategy proactivity (CSP). Competitiveness Review: An International Business Journal 32:2, 185-199. [Crossref]

39. Mingran Wu. 2022. The impact of eco-environmental regulation on green energy efficiency in China - Based on spatial economic analysis. Energy & Environment 12, 0958305X2110724. [Crossref]

41. Mattia Di Ubaldo, Steven McGuire, Vikrant Shirodkar. 2022. Voluntary programs and emissions revisited: What is the effect of EU trade agreements with environmental provisions?. Journal of International Business Policy 54. . [Crossref]

42. Eva Coll-Martínez, Malia Kedjar, Patricia Renou-Maissant. 2022. (Green) Knowledge spillovers and regional environmental support: do they matter for the entry of new green tech-based firms?. The Annals of Regional Science 36. . [Crossref]

44. Kai Ren, Yu-Sheng Kong, Muhammad Imran, Arshad Khan Bangash. 2022. The Impact of the Voluntary Environmental Agreements on Green Technology Innovation: Evidence From the Prefectural-Level Data in China. Frontiers in Environmental Science 10. . [Crossref]

45. Lili Xu, Sang-Ho Lee. 2022. Non-cooperative and cooperative environmental corporate social responsibility with emission taxes. Managerial and Decision Economics 7. . [Crossref]

46. Qiaoxin Xie, Yu Zhang, Lei Chen. 2022. Does green credit policy promote innovation: A case of China. Managerial and Decision Economics 19. . [Crossref]

47. Huan Zheng, Yu He. 2022. How do the China Pollution Discharge Fee Policy and the Environmental Protection Tax Law affect firm performance during the transitional period?. Environmental Science and Pollution Research 32. . [Crossref]

50. Jingyi Yang, Caiqi Bu, Daqian Shi. 2022. Does stringent environmental regulation reduce the overinvestment of high polluting firms? – Quasi-natural experiment evidence from China’s new “environmental protection law”. *Journal of Environmental Planning and Management* 29, 1-22. [Crossref]

52. YooJung Kim, Yejung Seo. 2022. The synergistic impact between internationalization and supply-and-demand interaction on firm performance: a study of environmental responsibility in social networking service. *International Journal of Contemporary Hospitality Management* 34:3, 908-928. [Crossref]

53. Hashim Zameer, Ying Wang, Humaira Yasmeen, Shujaat Mubarak. 2022. Green innovation as a mediator in the impact of business analytics and environmental orientation on green competitive advantage. *Management Decision* 60:2, 488-507. [Crossref]

54. Fengtai Zhang, Yuedong Xiao, Lei Gao, Dalai Ma, Ruiqi Su, Qing Yang. 2022. How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs. *Agricultural Water Management* 260, 107297. [Crossref]

56. Shenggang Ren, Duojun He, Ji Yan, Huixiang Zeng, Justin Tan. 2022. Environmental labeling certification and corporate environmental innovation: The moderating role of corporate ownership and local government intervention. *Journal of Business Research* 140, 556-571. [Crossref]

58. Florian Anselm Münch, Adela Marian. 2022. The design of technical requirements in public solar auctions: Evidence from India. *Renewable and Sustainable Energy Reviews* 154, 111713. [Crossref]

60. Basak Bayramoglu, Jean‐François Jacques. 2022. Is Clean Development Always Possible? The Role of Environmental Policy in Developing Countries in the Presence of Aggregate Demand Spillovers. *Environmental Modeling & Assessment* 27:1, 139-153. [Crossref]

62. Sebastian Losacker. 2022. ‘License to green’: Regional patent licensing networks and green technology diffusion in China. *Technological Forecasting and Social Change* 175, 121336. [Crossref]

63. Avik Sinha, Daniel Balsalobre-Lorente, Muhammad Wasif Zafar, Muhammad Mansoor Saleem. 2022. Analyzing global inequality in access to energy: Developing policy framework by inequality decomposition. *Journal of Environmental Management* 304, 114299. [Crossref]

64. Huan Zhang, Zhao Liu, Yue-Jun Zhang. 2022. Assessing the economic and environmental effects of environmental regulation in China: The dynamic and spatial perspectives. *Journal of Cleaner Production* 334, 130256. [Crossref]

67. Ge Li, Da Gao, Yi Li. 2022. Dynamic environmental regulation threshold effect of technical progress on green total factor energy efficiency: evidence from China. *Environmental Science and Pollution Research* 29:6, 8804-8815. [Crossref]

68. Shuwang Yang, Chao Wang, Hao Zhang, Tingshuai Lu, Yang Yi. 2022. Environmental regulation, firms’ bargaining power, and firms’ total factor productivity: evidence from China. *Environmental Science and Pollution Research* 29:6, 9341-9353. [Crossref]

69. Chao Tian, Xiuqing Li, Liming Xiao, Bangzhu Zhu. 2022. Exploring the impact of green credit policy on green transformation of heavy polluting industries. *Journal of Cleaner Production* 335, 130257. [Crossref]

70. Xianpu Xu, Xiawan Li, Lin Zheng. 2022. A Blessing or a Curse? Exploring the Impact of Environmental Regulation on China’s Regional Green Development from the Perspective of Governance Transformation. *International Journal of Environmental Research and Public Health* 19:3, 1312. [Crossref]

73. Yuxian Jiang, Xiang Xiao, Xiaoyue Li, Ge Ge. 2022. High-Speed Railway Opening and High-Quality Development of Cities in China: Does Environmental Regulation Enhance the Effects?. *Sustainability* 14:3, 1392. [Crossref]

74. Chengfeng Zhuo, Yuping Xie, Yanhua Mao, Pengqin Chen, Yiqiao Li. 2022. Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice?. *Energy Economics* 106, 105803. [Crossref]

76. Xiaosheng Li, Yunxia Shu, Xin Jin. 2022. Environmental regulation, carbon emissions and green total factor productivity: a case study of China. *Environment, Development and Sustainability* 24:2, 2577-2597. [Crossref]

77. Siming Liu, Peng Hou, Yingkun Gao, Yong Tan. 2022. Innovation and green total factor productivity in China: a linear and nonlinear investigation. *Environmental Science and Pollution Research* 29:9, 12810-12831. [Crossref]

79. Lianghu Wang, Zhao Wang, Yatian Ma. 2022. Heterogeneous environmental regulation and industrial structure upgrading: evidence from China. *Environmental Science and Pollution Research* 29:9, 13369-13385. [Crossref]

80. Yuming Zhang, Xiaolei Li, Chao Xing. 2022. How does China’s green credit policy affect the green innovation of high polluting enterprises? The perspective of radical and incremental innovations. *Journal of Cleaner Production* 336, 130387. [Crossref]
81. Xiang Yi, Shixiao Liu. 2022. The optimal decision rule of environmental regulation: an analysis of the cement industry. *Journal of Cleaner Production* 336, 130410. [Crossref]

82. Chao Zhang, Jinkai Cheng. 2022. Environmental Regulation and Corporate Cash Holdings: Evidence From China’s New Environmental Protection Law. *Frontiers in Environmental Science* 10. . [Crossref]

83. Salman Yahya, Adnan Khan, Maryam Farooq, Muhammad Irfan. 2022. Integrating green business strategies and green competencies to enhance green innovation: evidence from manufacturing firms of Pakistan. *Environmental Science and Pollution Research* 13. . [Crossref]

86. Xinyao Li, Wenhao Xue, Kai Wang, Yunfei Che, Jing Wei. 2022. Environmental regulation and synergistic effects of PM2.5 control in China. *Journal of Cleaner Production* 337, 130438. [Crossref]

87. Siying Yang, Wenzhi Wang, Dawei Feng, Jingjing Lu. 2022. Impact of pilot environmental policy on urban eco-innovation. *Journal of Cleaner Production* 102, 130858. [Crossref]

88. Xu-Quan Zhai, Rui Xue, Bin He, Dong Yang, Xiang-Yu Pei, Xian Li, Yuli Shan. 2022. Dynamic changes and convergence of China’s regional green productivity: A dynamic spatial econometric analysis. *Advances in Climate Change Research* 17. . [Crossref]

89. Yongchao Wu, Xinyu Gao. 2022. Can the establishment of eco-industrial parks promote urban green innovation? Evidence from China. *Journal of Cleaner Production* 70, 130855. [Crossref]

92. Prof Haiyue Liu, Jie Jiang, Dr Rui Xue, Xiaofan Meng, A/Prof Shiyang Hu. 2022. Corporate Environmental Governance Scheme and Investment Efficiency over the Course of COVID-19. *Finance Research Letters* 9, 102726. [Crossref]

96. Zeye Zhang, Xuerong Peng, Liuyong Yang, Seoki Lee. 2022. How does Chinese central environmental inspection affect corporate green innovation? The moderating effect of bargaining intentions. *Environmental Science and Pollution Research* 27. . [Crossref]

97. Hanmin Dong, Yishuang Liu, Zihui Zhao, Xiujie Tan, Shunsuke Managi. 2022. Carbon neutrality commitment for China: from vision to action. *Sustainability Science* 262. . [Crossref]
98. Cai Li, Saba Fazal Firdousi, Ayesha Afzal. 2022. China’s Jinshan Yinshan sustainability evolutionary game equilibrium research under government and enterprises resource constraint dilemma. *Environmental Science and Pollution Research* 220. [Crossref]

102. Maria Jell-Ojobor, Aveed Raha. 2022. Being good at being good—The mediating role of an environmental management system in value-creating green supply chain management practices. *Business Strategy and the Environment* 53. [Crossref]

103. Xinhai Lu, Yanwei Zhang, Jiajia Li, Kaifeng Duan. 2022. Measuring the urban land use efficiency of three urban agglomerations in China under carbon emissions. *Environmental Science and Pollution Research* 53. [Crossref]

111. Anamica Singh, Meenakshi Sharma. 2022. Development of a ‘green IT’ brand image sustainability model for competitive advantage. *Environment, Development and Sustainability* 229. [Crossref]

112. Huixin Lu, Shi Wang. 2022. Can China’s national Five-Year Plan for environmental protection induce corporate green innovations?. *Environmental Science and Pollution Research* 75. [Crossref]

113. Aoife Hanley, Finn Ole Semrau. 2022. Stepping up to the mark? Firms’ export activity and environmental innovation in 14 European countries. *Industry and Innovation* 88, 1-29. [Crossref]

117. I. A. Bashmakov. 2022. CBAM and Russian export. *Voprosy Ekonomiki* 1, 90-109. [Crossref]

119. Zhuojun Lei, Lingyun Huang, Yao Cai. 2022. Can environmental tax bring strong porter effect? Evidence from Chinese listed companies. *Environmental Science and Pollution Research* 102. . [Crossref]

121. Wei Qiu, Yaojun Bian, Jinwei Zhang, Muhammad Irfan. 2022. The role of environmental regulation, industrial upgrading, and resource allocation on foreign direct investment: evidence from 276 Chinese cities. *Environmental Science and Pollution Research* 13. . [Crossref]

122. Daqian Shi, Guangqin Xiong, Caizi Bu. 2022. The effect of stringent environmental regulation on firms’ TFP—new evidence from a quasi-natural experiment in Chongqing’s daily penalty policy. *Environmental Science and Pollution Research* 29. . [Crossref]

123. Qing Dong, Yanjun Wu, Han Lin, Zhoubao Sun, Rui Liang. 2022. Fostering green innovation for corporate competitive advantages in big data era: the role of institutional benefits. *Technology Analysis & Strategic Management* 172, 1-14. [Crossref]

125. Steven Samford, Dan Breznitz. 2022. Mending the Net: Public Strategies for the Remediation of Network Failures. *Social Forces* 100:3, 1333-1356. [Crossref]

127. Zhongfei Chen, Xinyue Hao, Mengling Zhou. 2022. Does institutional quality affect air pollution?. *Environmental Science and Pollution Research* 91. . [Crossref]

128. Rizwan Ullah, Weiwei Wu. 2022. How green-friendly practices and environmental disclosure affect the technological capability of the firm. *Environment, Development and Sustainability* 11. . [Crossref]

129. Huixiang Zeng, Chen Cheng, Youliang Jin, Qiong Zhou. 2022. Regional environmental supervision and corporate environmental investment: from the perspective of ecological damage compensation. *Environmental Science and Pollution Research* 81. . [Crossref]

131. Prajukta Tripathy, Monalisa Khatua, Pragyanrani Behera, Lopamudra D. Satpathyy, Pabitra Kumar Jena, Bikash Ranjan Mishra. 2022. Dynamic link between bilateral FDI, the quality of environment and institutions: evidence from G20 countries. *Environmental Science and Pollution Research* **34**. [Crossref]

132. Dongdong Li, Chenxuan Shang. 2022. When does environmental innovation crowd out process innovation? A dynamic analysis. *Managerial and Decision Economics* **1**. [Crossref]

133. Barbara Iannone. Sustainability, Corporate Social Responsibility, and Corporate Reputation in the Wine Sector 696-720. [Crossref]

134. Cristina Mocanu, Eva Militaru, Ana Maria Zamfir, Monica Mihaela Maer-Matei. Circular economy and financial performances of European SMEs 71-86. [Crossref]

136. Ada Domańska. Green Entrepreneurship 1-16. [Crossref]

140. Hetong Wang, Shaozhou Qi, Chaobo Zhou, Jingjie Zhou, Xiaoyan Huang. 2022. Green credit policy, government behavior and green innovation quality of enterprises. *Journal of Cleaner Production* **331**, 129834. [Crossref]

142. Viktor Prokop, Wolfgang Gerstlberger, David Zapletal, Michaela Kotkova Striteska. 2022. The double-edged role of firm environmental behaviour in the creation of product innovation in Central and Eastern European countries. *Journal of Cleaner Production* **331**, 129989. [Crossref]

143. Félix Calle, Inmaculada Carrasco, Ángela González- Moreno, Carmen Córcoles. 2022. Are Environmental Regulations to Promote Eco-Innovation in the Wine Sector Effective? A Study of Spanish Wineries. *Agronomy* **12**:1, 21. [Crossref]

144. Léopold Djoutsa Wamba. 2022. The determinants of environmental performance and its effect on the financial performance of European-listed companies. *Journal of General Management* **47**:2, 97-110. [Crossref]

146. Fengge Yao, Lin Li. The Impact of Digital Economy on China’s Low-Carbon Development 25-34. [Crossref]

147. Huimin Li, Fuqiang Wang, Lelin Lv, Qing Xia, Lunyan Wang. 2022. Evolutionary game analysis of government supervision and private sector ecological technology innovation behavior for water environment treatment PPP projects on the basis of public participation. *Canadian Journal of Civil Engineering* **49**:1, 41-51. [Crossref]

150. Felix Carl Schultz, Sebastian Everding. The Governance of Circular Plastics Supply Chain Collaboration **155-160**. [Crossref]

151. Yunqiang Liu, Sha Liu, Xiaoyu Shao, Yanqiu He. 2022. Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy. *Renewable and Sustainable Energy Reviews* **153**, 111779. [Crossref]

152. Kedong Yin, Runchuan Zhang, Xue Jin, Li Yu. 2022. Research and Optimization of the Coupling and Coordination of Environmental Regulation, Technological Innovation, and Green Development. *Sustainability* **14**:1, 501. [Crossref]

153. Nirmala Lee. Compliance 1-3. [Crossref]

154. Xiaoxiao Zhou, Xin Zhao. 2022. Does diversified environmental regulation make FDI cleaner and more beneficial to China's green growth?. *Environmental Science and Pollution Research* **29**:3, 3487-3497. [Crossref]

161. Lutao Ning, Rui Guo. 2022. Technological Diversification to Green Domains: Technological Relatedness, Invention Impact and Knowledge Integration Capabilities. *Research Policy* **51**:1, 104406. [Crossref]

163. Yu Hao, Yunxia Guo, Haitao Wu. 2022. The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?. *Business Strategy and the Environment* **31**:1, 403-424. [Crossref]
164. Domenico Morrone, Rosamartina Schena, Danilo Conte, Candida Bussoli, Angelantonio Russo. 2022. Between saying and doing, in the end there is the cost of capital: Evidence from the energy sector. *Business Strategy and the Environment* 31:1, 390-402. [Crossref]

167. Francesco Gangi, Mario Mustilli, Lucia Michela Daniele, Maria Coscia. 2022. The sustainable development of the aerospace industry: Drivers and impact of corporate environmental responsibility. *Business Strategy and the Environment* 31:1, 218-235. [Crossref]

171. Alexandra KÖVES, Zoltán BAJMÓCY. 2022. The end of business-as-usual? – A critical review of the air transport industry’s climate strategy for 2050 from the perspectives of Degrowth. *Sustainable Production and Consumption* 29, 228-238. [Crossref]

172. Dr. Monica Singhania, Dr. Neha Saini. 2022. Systems approach to environment, social and governance (ESG): Case of Reliance industries. *Sustainable Operations and Computers* 3, 103-117. [Crossref]

173. Xuemei Xie, Thu Thao Hoang, Qiwei Zhu. 2022. Green process innovation and financial performance: The role of green social capital and customers’ tacit green needs. *Journal of Innovation & Knowledge* 7:1, 100165. [Crossref]

174. Li Zhao, Ling Zhang, Jianxin Sun, Pengfei He. 2022. Can public participation constraints promote green technological innovation of Chinese enterprises? The moderating role of government environmental regulatory enforcement. *Technological Forecasting and Social Change* 174, 121198. [Crossref]

176. Diana Fernandes, Carolina Machado. Connecting ecological economics, green management, sustainable development, and circular economy: Corporate social responsibility as the synthetic vector 183-236. [Crossref]

177. Maria Luísa Vasconcelos, Clara Vasconcelos. Environmental Education for Sustainable Development: Working for Fundamental Rights 39-52. [Crossref]

180. Erdinc KOC, Ahmed İhsan ŞİMŞEK. 2021. A BIBLIOMETRIC ANALYSIS OF GREEN PRODUCTIVITY CONCEPT. *İşletme Bilimi Dergisi* 393-418. [Crossref]

183. Marcello Risitano, Rosaria Romano, Vincenzo Rusciano, Gennaro Civero, Debora Scarpato. 2021. The impact of sustainability on marketing strategy and business performance: The case of Italian fisheries. *Business Strategy and the Environment* 47. [Crossref]

192. Rabeh Khalfaoui, Aviral Kumar Tiwari, Usman Khalid, Muhammad Shabbaz. 2021. Nexus between carbon dioxide emissions and economic growth in G7 countries: fresh insights via wavelet coherence analysis. *Journal of Environmental Planning and Management* 2, 1-36. [Crossref]

193. Li Ji, Pan Jia, Jingshi Yan. 2021. Green credit, environmental protection investment and debt financing for heavily polluting enterprises. *PLOS ONE* 16:12, e0261311. [Crossref]

200. Tao Liu, Yue Li. 2021. Green development of China’s Pan-Pearl River Delta mega-urban agglomeration. *Scientific Reports* 11:1. . [Crossref]

204. Xiaqing Li, Zongyi Hu, Qing Zhang. 2021. Environmental regulation, economic policy uncertainty, and green technology innovation. *Clean Technologies and Environmental Policy* 23:10, 2975-2988. [Crossref]

206. Xueping Wu, Ming Gao. 2021. Effects of different environmental regulations and their heterogeneity on air pollution control in China. *Journal of Regulatory Economics* 60:2-3, 140-166. [Crossref]

212. Xiaodong Lei, Yanli Wang, Dongxiao Zhao, Qi Chen. 2021. The local–neighborhood effect of green credit on green economy: a spatial econometric investigation. *Environmental Science and Pollution Research* 28:46, 65776-65790. [Crossref]

222. Xiaoxiao Zhou, Juntao Du. 2021. Does environmental regulation induce improved financial development for green technological innovation in China?. *Journal of Environmental Management* 300, 113685. [Crossref]

226. Xuehong Zhu, Meng He, Hailing Li. 2021. Environmental regulation, governance transformation and the green development of Chinese iron and steel enterprises. *Journal of Cleaner Production* 328, 129557. [Crossref]

228. Fayuan Wang, Rong Wang, Zhili He. 2021. The impact of environmental pollution and green finance on the high–quality development of energy based on spatial Dubin model. *Resources Policy* 74, 102451. [Crossref]

232. Nuno Bento, Margarida Fontes, Juliana Barbosa. 2021. Inter-sectoral relations to accelerate the formation of technological innovation systems: Determinants of actors’ entry into marine renewable energy technologies. *Technological Forecasting and Social Change* 173, 121136. [Crossref]

233. Xiaohui Yang, Ji Yan, Kun Tian, Zihao Yu, Rebecca Yu Li, Senmao Xia. 2021. Centralization or decentralization? the impact of different distributions of authority on China’s environmental regulation. *Technological Forecasting and Social Change* 173, 121172. [Crossref]

247. PIA HURMELINNA-LAUKKANEN, EELIS PAUKKU, SANNA TASKILA. 2021. INNOVATION MANAGEMENT RESPONSES TO REGULATION—SUP-DIRECTIVE AND REPLACING PLASTIC. *International Journal of Innovation Management* 25:10. [Crossref]

248. YONGLIANG YANG, LILI DING, YI LI. 2021. ENVIRONMENTAL REGULATION IMPROVES THE FIRM PERFORMANCE IN THE PAPER INDUSTRY IN CHINA. *The Singapore Economic Review* 43, 1-32. [Crossref]

249. Da Gao, Ge Li, Yi Li, Kexin Gao. 2021. Does FDI improve green total factor energy efficiency under heterogeneous environmental regulation? Evidence from China. *Environmental Science and Pollution Research* 30. [Crossref]

250. Xinyue Hao, Fanglin Chen, Zhongfei Chen. 2021. Does green innovation increase enterprise value?. *Business Strategy and the Environment* 20. [Crossref]

256. Liang Wan, Shanyong Wang, Jianing Zang, Qiaoqiao Zheng, Wenpei Fang. 2021. Does the EU emissions trading system help reduce PM2.5 damage? A research based on PSM-DID method. *Environmental Science and Pollution Research* 100. [Crossref]

257. Muhammad Salam, Yingzhi Xu. 2021. Trade openness and environment: a panel data analysis for 88 selected BRI countries. *Environmental Science and Pollution Research* 6. [Crossref]

258. Shuai Shao, Chang Wang, Yue Guo, Bai-Chen Xie, Zhihua Tian, Shiyi Chen. 2021. Heterogeneous performances and consequences of China’s industrial environmental governance: clean production vs. end-of-pipe treatment. *Journal of Environmental Planning and Management* 18, 1-26. [Crossref]

261. Peng Li, Li-Li Shi. 2021. Do Environmental Regulations Improve Industrial Efficiency?. *Advances in Civil Engineering* **2021**, 1-11. [Crossref]

263. Yusen Gao, Changsheng Hu, Yue Yang. 2021. Will tougher environmental policy reduce the employment of industrial enterprises? The heterogeneity analysis based on enterprise level and city level. *Managerial and Decision Economics* **81**. [Crossref]

266. Maria João Santos, Cristina Silva Bastos. 2021. The adoption of sustainable development goals by large Portuguese companies. *Social Responsibility Journal* **17**:8, 1079-1099. [Crossref]

270. Danièle Cronjéa, Engelina du Plessis. 2021. What makes South Africa competitive from a tourist’s point of view?. *Development Southern Africa* **38**:6, 919-937. [Crossref]

284. HeDan Ma, LiXia Li. 2021. Could environmental regulation promote the technological innovation of China’s emerging marine enterprises? Based on the moderating effect of government grants. *Environmental Research* 202, 111682. [Crossref]

285. Man Qin, Mingxue Sun, Jun Li. 2021. Impact of environmental regulation policy on ecological efficiency in four major urban agglomerations in eastern China. *Ecological Indicators* 130, 108002. [Crossref]

295. Yaya Li, Yuru Zhang, Chien-Chiang Lee, Jing Li. 2021. Structural characteristics and determinants of an international green technological collaboration network. *Journal of Cleaner Production* **324**, 129258. [Crossref]

301. Pei Wang, Cong Dong, Nan Chen, Ming Qi, Shucheng Yang, Wenzhi Li. 2021. Environmental Regulation, Government Subsidies, and Green Technology Innovation—A Provincial Panel Data Analysis from China. *International Journal of Environmental Research and Public Health* **18**:22, 11991. [Crossref]

307. Fernando Queiroz Sperotto, Iván Gerardo Peyré Tartaruga. 2021. Transición tecnológica, sustentabilidad y ecoinnovación: el caso de las empresas brasileñas. *Innovar* **32**:83. [Crossref]

308. Mario La Torre, Sabrina Leo, Ida Claudia Panetta. 2021. Banks and environmental, social and governance drivers: Follow the market or the authorities?. *Corporate Social Responsibility and Environmental Management* **28**:6, 1620-1634. [Crossref]

314. Nuraddeen Abubakar Nuhu, Kevin Baird, Sophia Su. The Impact of Environmental Activity Management and Sustainability Strategy on Triple Bottom Line Performance 175-207. [Crossref]

315. Transitioning to a Prosperous, Resilient and Carbon-Free Economy 03. [Crossref]

316. Addressing Barriers to Change 569-667. [Crossref]

317. Karen Hussey, Thomas Faunce. Trade and Climate Change 571-590. [Crossref]

334. Shamal Chandra Karmaker, Shahadat Hosan, Andrew J. Chapman, Bidyut Baran Saha. 2021. The role of environmental taxes on technological innovation. Energy 232, 121052. [Crossref]

336. Xuehong Zhu, Xuguang Zuo, Hailing Li. 2021. The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises—Based on a high-dimensional fixed effects model. Ecological Economics 188, 107113. [Crossref]

337. D. Accordini, E. Cagno, A. Trianni. 2021. Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems. Renewable and Sustainable Energy Reviews 149, 111354. [Crossref]

338. Chao Xing, Yuming Zhang, David Tripe. 2021. Green credit policy and corporate access to bank loans in China: The role of environmental disclosure and green innovation. International Review of Financial Analysis 77, 101838. [Crossref]

339. Woon Leong Lin, Jo Ann Ho, Murali Sambasivan, Nick Yip, Azali Bin Mohamed. 2021. Influence of green innovation strategy on brand value: The role of marketing capability and R&D intensity. Technological Forecasting and Social Change 171, 120946. [Crossref]

340. Gecheng Yuan, Qin Ye, Yongping Sun. 2021. Financial innovation, information screening and industries’ green innovation — Industry-level evidence from the OECD. Technological Forecasting and Social Change 171, 120998. [Crossref]

341. Chinedu Increase Onwachukwu, Kit-Ming Isabel Yan, Kerui Tu. 2021. The causal effect of trade liberalization on the environment. Journal of Cleaner Production 318, 128615. [Crossref]

343. Wei Liu, Jing Shen, Yehua Dennis Wei, Wen Chen. 2021. Environmental justice perspective on the distribution and determinants of polluting enterprises in Guangdong, China. Journal of Cleaner Production 317, 128334. [Crossref]
344. Thomas Neumann. 2021. Does it pay for new firms to be green? An empirical analysis of when and how different greening strategies affect the performance of new firms. *Journal of Cleaner Production* 317, 128403. [Crossref]

346. Tonje Marthinsen Aastvedt, Niaz Bashiri Behmiri, Li Lu. 2021. Does green innovation damage financial performance of oil and gas companies?. *Resources Policy* 73, 102235. [Crossref]

348. Md Qamruzzaman. 2021. Nexus between environmental quality, institutional quality and trade openness through the channel of FDI: an application of common correlated effects estimation (CCEE), NARDL, and asymmetry causality. *Environmental Science and Pollution Research* 28:37, 52475-52498. [Crossref]

355. Mengqi Quan, Quan Guo, Qing Xia, Min Zhou. 2021. Research on the Effects of Environmental Regulations on Industrial–Technological Innovation Based on Pressure Transmission. *Sustainability* 13:19, 11010. [Crossref]

364. Shuke Fu, Zhuo Ma, Bing Ni, Jiachao Peng, Lijing Zhang, Qiang Fu. 2021. Research on the spatial differences of pollution-intensive industry transfer under the environmental regulation in China. *Ecological Indicators* 129, 107921. [Crossref]

368. Youxing Huang, Qi Xu, Yanping Zhao. 2021. Short-run pain, long-run gain: Desulfurization investment and productivity. *Energy Economics* 102, 105520. [Crossref]

377. Yee-Shan Chang, Xin-Jean Lim, Jun-Hwa Cheah. 2021. Today's wastage is tomorrow's shortage: a systematic literature review on food waste from social responsibility perspective. *British Food Journal* 123:9, 3172-3191. [Crossref]

382. Cai Chen, Yingli Zhang, Yun Bai, Wenrui Li. 2021. The impact of green credit on economic growth—The mediating effect of environment on labor supply. *PLOS ONE* 16:9, e0257612. [Crossref]

392. Shaozhen Han, Ying Pan, Mark Mygrant, Mengdi Li. 2021. Differentiated environmental regulations and corporate environmental responsibility: The moderating role of institutional environment. *Journal of Cleaner Production* **313**, 127870. [Crossref]

393. Jakeline Serrano-García, Andrea Bikfalvi, Josep Llach, Juan José Arbeláez-Toro. 2021. Orchestrating capabilities, organizational dimensions and determinants in the pursuit of green product innovation. *Journal of Cleaner Production* **313**, 127873. [Crossref]

396. Yassin Denis Bouzzine. 2021. Stock price reactions to environmental pollution events: A systematic literature review of direct and indirect effects and a research agenda. *Journal of Cleaner Production* **316**, 128305. [Crossref]

397. Feng Han, Zhangcong Feng, Chao Wang, Nujie Yang, Dong Yang, Feng Shi. 2021. Interweaving Industrial Ecology and Ecological Modernization: A Comparative Bibliometric Analysis. *Sustainability* **13**:17, 9673. [Crossref]

403. Szabina Fodor, Ildikó Szabó, Katalin Ternai. 2021. Competence-Oriented, Data-Driven Approach for Sustainable Development in University-Level Education. *Sustainability* **13**:17, 9977. [Crossref]

425. Shafique Ur Rehman, Anam Bhatti, Sascha Kraus, João J. M. Ferreira. 2021. The role of environmental management control systems for ecological sustainability and sustainable performance. *Management Decision* 59:9, 2217-2237. [Crossref]

434. Dongdong Li. 2021. Dynamic optimal control of firms’ green innovation investment and pricing strategies with environmental awareness and emission tax. *Managerial and Decision Economics* 102. [Crossref]

444. Yang Pengpeng, Yao Mengxiao, Du Xichao, Yang Yongjun, Jin Man. Research on the multi-configuration of enterprise green technology innovation motivation: —Based on the analysis of resource-based listed enterprises 412-417. [Crossref]

446. Romain Debref. Why Should We Fear Energy and Material Savings? Deconstructing a Sustainability Myth 143-167. [Crossref]

447. Anhua Zhou, Jun Li. 2021. Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China's provincial-level data. *Energy* 228, 120562. [Crossref]

466. Incheol Kim, Christos Pantzalis, Zhengyi Zhang. 2021. Multinationality and the value of green innovation. *Journal of Corporate Finance* 69, 101996. [Crossref]

469. Min Zhou, Kannan Govindan, Xiongbiao Xie, Liang Yan. 2021. How to drive green innovation in China’s mining enterprises? Under the perspective of environmental legitimacy and green absorptive capacity. *Resources Policy* 72, 102038. [Crossref]

470. Alessio D’Amato, Massimiliano Mazzanti, Francesco Nicoll. 2021. Green technologies and environmental policies for sustainable development: Testing direct and indirect impacts. *Journal of Cleaner Production* 309, 127060. [Crossref]

479. Xinfei Li, Yuan Tian, Yueming Li, Chang Xu, Xiaobing Liu, Baodong Cheng. 2021. Modeling the Impact of Innovation on Economic Quality and Environmental Pollution Change under Consideration of Environmental Regulation. Discrete Dynamics in Nature and Society 2021, 1-13. [Crossref]

485. Jintao Zhang, Zhen Yang, Li Meng, Lu Han. 2021. Environmental regulations and enterprises innovation performance: the role of R&D investments and political connections. Environment, Development and Sustainability 7. . [Crossref]

490. Le Thanh Ha, Pham Xuan Nam, To Trung Thanh. 2021. Effects of Bribery on Firms’ Environmental Innovation Adoption in Vietnam: Mediating Roles of Firms’ Bargaining Power and Credit and Institutional Constraints. Ecological Economics 185, 107042. [Crossref]

492. Emy Zecca, Francesco Nicolli. 2021. Inequality, democracy and green technological change. *Journal of Cleaner Production* **306**, 127061. [Crossref]

506. Xing Yan, Yi Zhang. 2021. The effects of green innovation and environmental management on the environmental performance and value of a firm: an empirical study of energy-intensive listed companies in China. *Environmental Science and Pollution Research* **28**:27, 35870-35879. [Crossref]

526. Lu Huang, Lihua Wang, Zhusheng Liu, Yujie Li. 2021. Evolutionary game analysis of green industry development in the age of sharing economy. *Applied Economics* 53:27, 3065-3079. [Crossref]

527. Li Xie, Zexin Li, Xiuhua Ye, Yanru Jiang. 2021. Environmental regulation and energy investment structure: Empirical evidence from China’s power industry. *Technological Forecasting and Social Change* 167, 120690. [Crossref]

529. Qiong Yao, Suzhen Zeng, Shiben Sheng, Shiyuan Gong. 2021. Green innovation and brand equity: moderating effects of industrial institutions. *Asia Pacific Journal of Management* 38:2, 573-602. [Crossref]

530. Xinfei Li, Baodong Cheng, Qiling Hong, Chang Xu. 2021. Can a Win–Win Situation of Economy and Environment Be Achieved in Cities by the Government’s Environmental Regulations?. *Sustainability* 13:11, 5829. [Crossref]

531. Nebojša Stojčić. 2021. Social and private outcomes of green innovation incentives in European advancing economies. *Technovation* 104, 102270. [Crossref]

536. Chengchao Lv, Changhua Shao, Chien-Chiang Lee. 2021. Green technology innovation and financial development: Do environmental regulation and innovation output matter?. *Energy Economics* 98, 105237. [Crossref]

543. Chuluunbat Tsendsuren, Prayag Lal Yadav, Sangsoo Kim, Seunghun Han. 2021. The Effects of Managerial Competency and Local Religiosity on Corporate Environmental Responsibility. *Sustainability* 13:11, 5857. [Crossref]

551. Gagari Chakrabarti, Chitrakalpa Sen. 2021. Dynamic market risk of green stocks across regions: Where does the devil lie?. *Journal of Cleaner Production* 303, 127028. [Crossref]

552. Silvia Blasi, Benedetta Crisafulli, Silvia Rita Sedita. 2021. Selling circularity: Understanding the relationship between circularity promotion and the performance of manufacturing SMEs in Italy. *Journal of Cleaner Production* 303, 127035. [Crossref]

554. Wenbin Peng, Yong Yin, Change Kuang, Zezhou Wen, Jinsong Kuang. 2021. Spatial spillover effect of green innovation on economic development quality in China: Evidence from a panel data of 270 prefecture-level and above cities. *Sustainable Cities and Society* 69, 102863. [Crossref]

557. Xin Nie, Jianxian Wu, Zhoupeng Chen, Anlu Zhang, Han Wang. 2021. Can environmental regulation stimulate the regional Porter effect? Double test from quasi-experiment and dynamic panel data models. *Journal of Cleaner Production* 58, 128027. [Crossref]

572. Som Sekhar Bhattacharyya, Shreyash Thakre. 2021. Exploring the factors influencing electric vehicle adoption: an empirical investigation in the emerging economy context of India. *foresight* 23:3, 311-326. [Crossref]

573. Dong-Hyeon Kim, Yi-Chen Wu, Shu-Chin Lin. 2021. Carbon dioxide emissions, financial development and political institutions. *Economic Change and Restructuring* 90. . [Crossref]

575. İsmail Hakkı ERASLAN, Serhat FIRAT. 2021. BÖLGESEL KALKINMA ÇALIŞMALARINDA GELENEKSEL VE TAMAMLAYICI TIP SEKTÖRÜNÜN (GETAT) ROLÜ: Düzce İli GETAT Sektörünün Uluslararası Rekabetçilik Analizması. *Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi* . [Crossref]

579. Ruihan Zhang, Bing Sun, Mingyao Liu, Jian Hou. 2021. Haze pollution, new-type urbanization and regional total factor productivity growth: based on a panel dataset involving all 31 provinces within the territory of China. *Kybernetes* 50:5, 1357-1378. [Crossref]

585. Xindi Xu, Qinyun Wang, Haichao Hu, Xinjun Wang. 2021. Air Pollution Control: An Analysis of China’s Industrial Off-Peak Production Policy through the Quasi-Natural Experiment Method. *Sustainability* 13:9, 4808. [Crossref]

587. Yu-Hong Ai, Di-Yun Peng, Huan-Huan Xiong. 2021. Impact of Environmental Regulation Intensity on Green Technology Innovation: From the Perspective of Political and Business Connections. *Sustainability* 13:9, 4862. [Crossref]

591. Qaisar Iqbal, Noor Hazlina Ahmad, Yongmei Li. 2021. Sustainable Leadership in Frontier Asia Region: Managerial Discretion and Environmental Innovation. *Sustainability* 13:9, 5002. [Crossref]

595. Xiping Wang, Moyang Li. 2021. The threshold effect of cost-based environmental regulation on thermal power generation environmental governance efficiency. *Environmental Science and Pollution Research* 28:17, 21706–21716. [Crossref]

599. Runsen Yuan, Chunling Li, Nian Li, Muhammad Asif Khan, Xiaoran Sun, Nosherwan Khaliq. 2021. Can Mixed-Ownership Reform Drive the Green Transformation of SOEs?. *Energies* 14:10, 2964. [Crossref]

604. Miao Wang, Chao Feng. 2021. The win-win ability of environmental protection and economic development during China's transition. *Technological Forecasting and Social Change* 166, 120617. [Crossref]

608. Xiaoman Wu, Jun Liu, Yulian Peng. 2021. A novel heuristic approach for sustainable social and economic development based on green computing technology and big data. *Journal of Enterprise Information Management* ahead-of-print. [Crossref]

612. An Pan, Shuangshuang Feng, Xinyuan Hu, Yaya Li. 2021. How environmental regulation affects China's rare earth export?. *PLOS ONE* 16:4, e0250407. [Crossref]

622. Yinhao Wu, Shumin Yu, Xiangdong Duan. 2021. The Impact of Environmental Regulation on the Location of Pollution-Intensive Industries in China under Agglomeration Effect. *International Journal of Environmental Research and Public Health* **18**:8, 4045. [Crossref]

629. Shun Jia Liu, Xin Long Xu. 2021. The pollution halo effect of technology spillover and pollution haven effect of economic growth in agricultural foreign trade: two sides of the same coin?. *Environmental Science and Pollution Research* **28**:16, 20157-20173. [Crossref]

630. Mingde Guo, Hong Li, Wen Lin. 2021. The impact of economic growth, FDI, and innovation on environmental efficiency of the logistics industry in provinces along the belt and road in China: An empirical study based on the panel Tobit model. *Science Progress* **104**:2, 003685042110180. [Crossref]

641. Li Li, Junwei Sun, Jingjing Jiang, Jun Wang. 2021. The effect of environmental regulation competition on haze pollution: evidence from China’s province-level data. *Environmental Geochemistry and Health* **82**. [Crossref]

645. Leonardo B. Barbosa, Jorge Carneiro, Camila Costa, Filip De Beule, Rafael Goldszmidt, T. Diana Macedo-Soares. Environmental Sustainability Strategy and International Performance: A Review of Literature and a Conceptual Model 375-397. [Crossref]

665. Owais Khan, Tiberio Daddi, Fabio Iraldo. 2021. Sensing, seizing, and reconfiguring: Key capabilities and organizational routines for circular economy implementation. Journal of Cleaner Production 287, 125565. [Crossref]

Florian Rey, Thierry Madiès. 2021. Addressing the concerns about carbon leakage in the implementation of carbon pricing policies: a focus on the issue of competitiveness. *Journal of Industrial and Business Economics* **48**:1, 53-75. [Crossref]

Giuliana Birindelli, Helen Chiappini. 2021. Climate change policies: Good news or bad news for firms in the European Union?. *Corporate Social Responsibility and Environmental Management* **28**:2, 831-848. [Crossref]

Jing Li, Yuanxin Du. 2021. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. *Journal of Cleaner Production* **286**, 125032. [Crossref]

Hongbing Li, Bingbing Zhang, Lei Wen, Zhen Li. 2021. On the Relationship between the Energy Conservation and Emissions Reduction Policy and Employment Adjustment by Manufacturing Firms: Microdata from China. *Journal of Cleaner Production* **84**, 126652. [Crossref]

Diana Fernandes, Carolina Feliciana Machado. Stop Camouflaging it in Green: Do Not Confuse Corporate Social Responsibility with Sustainable Management 225-260. [Crossref]

686. Alex Coad, Gianluca Biggi, Elisa Giuliani. 2021. Asbestos, leaded petrol, and other aberrations: comparing countries’ regulatory responses to disapproved products and technologies. *Industry and Innovation* **28**:2, 201-233. [Crossref]

689. Dan Wu, Shuwei Li, Li Liu, Jiyao Lin, Shiqiu Zhang. 2021. Dynamics of pollutants’ shadow price and its driving forces: An analysis on China’s two major pollutants at provincial level. *Journal of Cleaner Production* **283**, 124625. [Crossref]

693. Yan Feng, Hao Chen, Zhujun Chen, Yinuo Wang, Wendong Wei. 2021. Has environmental information disclosure eased the economic inhibition of air pollution? *Journal of Cleaner Production* **284**, 125412. [Crossref]

694. Matthew E. Kahn, Nancy Lozano-Gracia, Maria Edisa Soppelsa. 2021. POLLUTION’S ROLE IN REDUCING URBAN QUALITY OF LIFE IN THE DEVELOPING WORLD. *Journal of Economic Surveys* **35**:1, 330-347. [Crossref]

697. Mustafa Changar, Târık Atan. 2021. The Role of Transformational and Transactional Leadership Approaches on Environmental and Ethical Aspects of CSR. *Sustainability* **13**:3, 1411. [Crossref]

710. Song Wang, Xueli Wang, Fei Lu, Fei Fan. 2021. The impact of collaborative innovation on ecological efficiency – empirical research based on China’s regions. *Technology Analysis & Strategic Management* **33**:2, 242-256. [Crossref]
711. Mohd Arshad Ansari, N.A. Khan. 2021. Decomposing the trade–environment nexus for high income, upper and lower middle income countries: What do the composition, scale, and technique effect indicate?. *Ecological Indicators* **121**, 107122. [Crossref]
715. Naman Sreen, Rambalak Yadav, Sushant Kumar, Mark Gleim. 2021. The impact of the institutional environment on green consumption in India. *Journal of Consumer Marketing* **38**:1, 47-57. [Crossref]

718. Maryline Filippi. 2021. Do French agrifood co-ops have a head start in Corporate Social Responsibility? An initial examination of French co-ops and their practices. *Review of Agricultural, Food and Environmental Studies* 190. [Crossref]

722. Photis M. Panayides, Andria E. Alexandrou, Stelios E. Alexandrou. Green Supply Chain Management, Environmental Controls and Regulations in Shipping 275-292. [Crossref]

723. Diana L. Copper. Sustainability Transformations—From Theory to Practice 165-190. [Crossref]

724. Luigi Aldieri, Concerto Paolo Vinci. Eco-Innovation in Support of Sustainable Development Goals 1-10. [Crossref]

726. Rana Muhammad Adeel-Farooq, Muhammad Faraz Riaz, Tariq Ali. 2021. Improving the environment begins at home: Revisiting the links between FDI and environment. *Energy* 215, 119150. [Crossref]

729. Francisco Javier Forcadell, Fernando Úbeda, Elisa Aracil. 2021. Effects of environmental corporate social responsibility on innovativeness of spanish industrial SMEs#.###. Technological Forecasting and Social Change 162, 120355. [Crossref]

731. Giovanni Di Bartolomeo, Enrico Saltari, Willi Semmler. The Effects of Political Short-Termism on Transitions Induced by Pollution Regulations 109-122. [Crossref]

742. Annabeth Aagaard. Drivers of Eco-innovation and Leverage Through Sustainable Business Models 284-292. [Crossref]

743. Dennis Kolcava, Joachim Scholderer, Thomas Bernauer. 2021. Do citizens provide political rewards to firms engaging in voluntary environmental action?. *Journal of Cleaner Production* 279, 123564. [Crossref]

744. Weiping Zeng, Lin Li, Yue Huang. 2021. Industrial collaborative agglomeration, marketization, and green innovation: Evidence from China’s provincial panel data. *Journal of Cleaner Production* 279, 123598. [Crossref]

745. Shaozhou Qi, Shihan Cheng, Jingbo Cui. 2021. Environmental and economic effects of China’s carbon market pilots: Empirical evidence based on a DID model. *Journal of Cleaner Production* 279, 123720. [Crossref]

747. Ángel Díaz-Chao, Pilar Ficapal-Cusí, Joan Torrent-Sellens. 2021. Environmental assets, industry 4.0 technologies and firm performance in Spain: A dynamic capabilities path to reward sustainability. *Journal of Cleaner Production* 281, 125264. [Crossref]

748. Katia Giusepponi. Win-Win Situation 1-3. [Crossref]

749. Claudia Ranocchia, Luca Lamberti. 2021. Porter Hypothesis vs Pollution Haven Hypothesis: Can There Be Environmental Policies Getting Two Eggs in One Basket?. *Environmental and Resource Economics* 78:1, 177-199. [Crossref]

753. Dongyang Zhang, Samuel A. Vigne. 2021. How does innovation efficiency contribute to green productivity? A financial constraint perspective. *Journal of Cleaner Production* 280, 124000. [Crossref]

755. Francesco Gangi, Nicola Varrone, Lucia Michela Daniele. Socially Responsible Banking: Towards a New Firm–Bank Relationship 101-154. [Crossref]

756. Elissaios Papyrakis, Luca Tasciotti. Environmental Standards and Trade 63-73. [Crossref]

757. Elissaios Papyrakis, Luca Tasciotti. The Costs of Environmental Standards 33-49. [Crossref]

758. Elissaios Papyrakis, Luca Tasciotti. The Benefits of Environmental Standards 17-31. [Crossref]

759. Keroboto B. Z. Ogutu, Fabio D’Andrea, Andreas Groth, Michael Ghil. Coupled Climate-Economy-Ecology-Biosphere Modeling: A Dynamic and Stochastic Approach 1-63. [Crossref]

762. Yaşar Gökalp. Identifying Innovative Financial Health Management Strategies for Turkey 207-222. [Crossref]

763. Yasuhiro Ogura. 2021. Heterogeneous policy effects on the export of photovoltaic and wind energy components: Evidence from a matching estimator. *SSRN Electronic Journal* 74. . [Crossref]

764. Luigi Aldieri, Concetto Paolo Vinci. Eco-innovation in Support of Sustainable Development Goals 231-240. [Crossref]

765. Gianluca Orsatti, Francesco Quatraro, Alessandra Scandura. Regional Differences in the Generation of Green Technologies: The Role of Local Recombinat Capabilities and Academic Inventors 33-52. [Crossref]

766. Rifath Ali, Troy Rawlins. Investigations: Environmental Pollution Dumping 548-553. [Crossref]

767. Marc Ringel. Grundlagen von Umweltökonomie und Umweltpolitik 1-21. [Crossref]

768. Marc Ringel. Staatliche Förderung von Umweltbranchen: „Green Growth“ 147-163. [Crossref]

770. Youssef Jaouhari, Laila Stour, Ali Agoumi. Mainstreaming of Climate Change Adaptation in Moroccan Companies: Tools, ‘Perspectives, and Partnerships 1-33. [Crossref]

771. Sergio Rocha, Prakrati Thakur. 2021. Trade Networks and Regulatory Standards Diffusion. *SSRN Electronic Journal* 32. . [Crossref]

772. Min Huang, Mengyao Li, Zhihan Liao. 2021. Do politically connected CEOs promote Chinese listed industrial firms’ green innovation? The mediating role of external governance environments. *Journal of Cleaner Production* 278, 123634. [Crossref]

774. Martha Davis. Consumer Privacy Regulations 1844-1860. [Crossref]
776. Volker Lingnau, Florian Fuchs, Florian Beham. Die Status quo-Falle – Oder: It can kill you not being „good“ enough 33-51. [Crossref]
777. Daniel Gerbaulet. Strategische Wettbewerbsvorteile im Kontext nachhaltiger Unternehmensführung 335-347. [Crossref]
778. K. Muralidharan. Achieving and Promoting Lean, Green, and Clean Quality Objectives 203-214. [Crossref]
779. Orkun Çelik, Özge Korkmaz, Zafer Adalı. Investigation of the Foreign Direct Investment and Environmental Pollution Nexus for Developing Countries 320-338. [Crossref]
781. Begum Sertyesilisik. Political Economy of the Green Innovations in the Construction Industry 527-546. [Crossref]
782. Filippo Sgroi. 2021. Landscape management and economic evaluation of the ecosystem services of the vineyards. *AIMS Environmental Science* **8**:4, 393-402. [Crossref]
783. Michael Spencer, Zhenzhen Xu. Water Stewardship: Engaging Business, Civil Society and Government in Collaborative Solutions to China’s Freshwater Challenges 193-224. [Crossref]
785. Shikha Singh, Abhinav Yadav. Interconnecting the environment with economic development of a nation 35-60. [Crossref]
789. Knut Blind. Standardisierung als innovationspolitisches Instrument 935-946. [Crossref]
790. Mario Svigir. Sustainable Enterprise DNA 209-229. [Crossref]
791. Bhagirath, Neetu Mittal, Sushil Kumar. Online Resale Bike Price Prediction in Indian Market 157-167. [Crossref]
793. Martin Franz, Felix Bücken, Kim Philip Schumacher, Kai Michael Gries. Sustainability Transition and Climate Change Adaption of Logistics 1-8. [Crossref]
794. Ricardo Prada, Pablo Ocampo. Quality Models and Systems in Relation to the Automotive Sector in Colombia 331-352. [Crossref]
795. Vanessa de Oliveira Menezes, Elena Cavagnaro. Communicating Sustainable Initiatives in the Hotel Industry 224-234. [Crossref]

796. Monish P., M. Dhanabhakyam. Sustainability Strategies for Developing SMEs and Entrepreneurship 527-547. [Crossref]

797. Silpa Satheesh. Fighting in the Name of Workers: Exploring the Dynamics of Labour-Environmental Conflicts in Kerala 199-223. [Crossref]

798. Fouad El Ouardighi, Jeongeun Sim, Bowon Kim. 2021. Pollution accumulation and abatement policies in two supply chains under vertical and horizontal competition and strategy types. *Omega* 98, 102108. [Crossref]

799. Simone Pulver, Ben Manski. Corporations and the Environment 89-114. [Crossref]

800. Akihiro Otsuka. Regional Sustainability and Energy Intensity 143-174. [Crossref]

801. Akihiro Otsuka. Executive Summary 1-14. [Crossref]

802. Youssef Jaouhari, Laila Stour, Ali Agouni. Mainstreaming of Climate Change Adaptation in Moroccan Companies: Tools, Teaching, and Perspectives 4687-4718. [Crossref]

803. Adele Parmentola, Ilaria Tutore, Michele Costagliola Di Fiore. Environmental Side of Fourth Industrial Revolution: The Positive and Negative Effects of 4.0 Technologies 1-31. [Crossref]

804. Виталий Черенков, Сергей Старов, Игорь Гладких, Сергей Кирюков, Екатерина Назаренко. 2021. Turning a private label of an eco-product seller into a sustainability brand is the path to responsible consumption. *Маркетинг и маркетинговые исследования* 3, 194-207. [Crossref]

805. Volker Lingnau, Florian Fuchs. Controlling und Ethik 1-19. [Crossref]

806. Somlanare Romuald Kinda. 2021. Does the green economy really foster food security in Sub-Saharan Africa?. *Cogent Economics & Finance* 9:1. . [Crossref]

808. Hongru Wang, Chengmin Fan, Sicheng Chen. 2021. The Impact of Campaign-Style Enforcement on Corporate Environmental Action#Evidence from China’s Central Environmental Protection Inspection. *Journal of Cleaner Production* 125881. [Crossref]

811. Mahmut TEKİN, Derya ÖZTÜRK, Aymen KHITER. 2020. YEŞİL TEDARİK ZİNCİRİ YÖNETİMİNİN OPERASYONEL VERİMLİLİK ÜZERİNE ETKİSİ: BİR ÖRNEK OLAY ÇALIŞMASI. *Kabramanمارası Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi* . [Crossref]

813. Stuart Evans, Michael A. Mehling, Robert A. Ritz, Paul Sammon. 2020. Border carbon adjustments and industrial competitiveness in a European Green Deal. *Climate Policy* 37, 1-11. [Crossref]

817. Mohamed Hicham Hamri, Soukaina Jouad. Management Innovation for Environmental Sustainability in Seaports: Application of sustainable balanced scorecard to the port of Agadir 1–6. [Crossref]

818. Brigitte Hoogendoorn, Peter van der Zwan, Roy Thurik. 2020. Goal heterogeneity at start-up: are greener start-ups more innovative?. *Research Policy* 49:10, 104061. [Crossref]

822. Kian-Guan Lim, Michelle Lim. 2020. Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation. *Journal of Shipping and Trade* 5:1. . [Crossref]

824. Wanfang Xiong, Yan Han, M. James C. Crabbe, Xiao-Guang Yue. 2020. Fiscal Expenditures on Science and Technology and Environmental Pollution: Evidence from China. *International Journal of Environmental Research and Public Health* 17:23, 8761. [Crossref]

826. Hailing Li, Xuehong Zhu, Jinyu Chen. 2020. Total factor waste gas treatment efficiency of China’s iron and steel enterprises and its influencing factors: An empirical analysis based on the four-stage SBM-DEA model. *Ecological Indicators* 119, 106812. [Crossref]

830. Anthony Frigon, David Doloreux, Richard Shearmur. 2020. Drivers of eco-innovation and conventional innovation in the Canadian wine industry. *Journal of Cleaner Production* 275, 124115. [Crossref]

832. Sebastian Losacker, Ingo Liefner. 2020. Regional lead markets for environmental innovation. *Environmental Innovation and Societal Transitions* 37, 120–139. [Crossref]
833. Xiaoning Zhang, Mei Qu. 2020. Impact of Environmental Regulation on Scientific and Technological Competitiveness of Resource-Based Cities in China—Based on Panel Data of 33 Resource-Based Cities. *International Journal of Environmental Research and Public Health* **17**:24, 9187. [Crossref]

836. Qi Sun, Qiaosheng Wu, Jinhua Cheng, Pengcheng Tang, Siyao Li, Yantuo Mei. 2020. How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy?. *Sustainability* **12**:24, 10577. [Crossref]

854. Denise M. Mitrano, Wendel Wohlleben. 2020. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. *Nature Communications* **11**:1. [Crossref]

857. Fernanda Gabriela Borger, Ana Paula P. Costa. Corporate Social Responsibility and Sustainability in Corporate Strategy: Brazilian Cases Studies. [Crossref]

860. Abba Ya’u, Natrah Saad, Abdulsalam Mas’ud. 2020. Validating the effects of the environmental regulation compliance scale: evidence from the Nigerian oil and gas industry. *Environmental Science and Pollution Research* **7**. [Crossref]

862. Angela Tritto. 2020. Environmental management practices in hotels at world heritage sites. *Journal of Sustainable Tourism* **28**:11, 1911-1931. [Crossref]

863. Xin-Long Xu, Hsing Hung Chen. 2020. Exploring the relationships between environmental management and financial sustainability in the energy industry: Linear and nonlinear effects. *Energy & Environment* **31**:7, 1281-1300. [Crossref]

870. Alexandra Gottinger, Luana Ladu, Rainer Quitzow. 2020. Studying the Transition towards a Circular Bioeconomy—A Systematic Literature Review on Transition Studies and Existing Barriers. *Sustainability* **12:**21, 8990. [Crossref]

871. Tai-Wei Chang, Yen-Li Yeh, Hung-Xin Li. 2020. How to Shape an Organization’s Sustainable Green Management Performance: The Mediation Effect of Environmental Corporate Social Responsibility. *Sustainability* **12:**21, 9198. [Crossref]

876. Owais Khan, Tiberio Daddi, Fabio Iraldo. 2020. The role of dynamic capabilities in circular economy implementation and performance of companies. *Corporate Social Responsibility and Environmental Management* **27:**6, 3018-3033. [Crossref]

878. Zhongju Liao, Chen Weng, Chen Shen. 2020. Can public surveillance promote corporate environmental innovation? The mediating role of environmental law enforcement. *Sustainable Development* **28:**6, 1519-1527. [Crossref]

882. Gregor Dorfleitner, Johannes Grebler. 2020. The social and environmental drivers of corporate credit ratings: international evidence. *Business Research* **13:**3, 1343-1415. [Crossref]

885. Sebastian Kobarg, Jutta Stumpf-Wollersheim, Christopher Schlägel, Isabell M. Welp. 2020. Green together? The effects of companies’ innovation collaboration with different partner types on ecological process and product innovation. *Industry and Innovation* **27**:9, 953-990. [Crossref]

886. Frank Venmans, Jane Ellis, Daniel Nachtigall. 2020. Carbon pricing and competitiveness: are they at odds? *Climate Policy* **20**:9, 1070-1091. [Crossref]

888. Ziyuan Sun, Xiaoping Wang, Chen Liang, Fei Cao, Ling Wang. 2020. The impact of heterogeneous environmental regulation on innovation of high-tech enterprises in China: mediating and interaction effect. *Environmental Science and Pollution Research* **102**. [Crossref]

911. Liyun Liu, Zhenzhi Zhao, Mingming Zhang, Changxiao Zhou, Dequn Zhou. 2020. The effects of environmental regulation on outward foreign direct investment’s reverse green technology spillover: Crowding out or facilitation?. *Journal of Cleaner Production* 124689. [Crossref]

Huan Zhou, Shaojian Qu, Zhong Wu, Ying Ji. 2020. A study of environmental regulation, technological innovation, and energy consumption in China based on spatial econometric models and panel threshold models. *Environmental Science and Pollution Research* 27:30, 37894–37910. [Crossref]

Xia Pan, Wenying Cheng, Yuning Gao, Tomas Balezentis, Zhiyang Shen. 2020. Is environmental regulation effective in promoting the quantity and quality of green innovation?. *Environmental Science and Pollution Research* 103. [Crossref]

Raul Pacheco-Vega. 2020. Environmental regulation, governance, and policy instruments, 20 years after the stick, carrot, and sermon typology. *Journal of Environmental Policy & Planning* 22:5, 620–635. [Crossref]

Boqiang Lin, Xing Chen. 2020. Environmental regulation and energy-environmental performance—Empirical evidence from China’s non-ferrous metals industry. *Journal of Environmental Management* 269, 110722. [Crossref]

Jiangfeng Hu, Xinxin Pan, Qinghua Huang. 2020. Quantity or quality? The impacts of environmental regulation on firms’ innovation—Quasi-natural experiment based on China’s carbon emissions trading pilot. *Technological Forecasting and Social Change* 158, 120122. [Crossref]

Irja Vormedal, Jon Birger Skjærseth. 2020. The good, the bad, or the ugly? Corporate strategies, size, and environmental regulation in the fish-farming industry. *Business and Politics* 22:3, 510–538. [Crossref]

Arjan Trinks, Machiel Mulder, Bert Scholtens. 2020. An Efficiency Perspective on Carbon Emissions and Financial Performance. *Ecological Economics* 175, 106632. [Crossref]

Bazyli Czyżewski, Katarzyna Smędzik-Amброży, Aldona Mrówczyńska-Kamińska. 2020. Impact of environmental policy on eco-efficiency in country districts in Poland: How does the decreasing return to scale change perspectives?. *Environmental Impact Assessment Review* 84, 106431. [Crossref]

935. Tingting Yao, Zelin Huang, Wei Zhao. 2020. Are smart cities more ecologically efficient? Evidence from China. *Sustainable Cities and Society* **60**, 102008. [Crossref]

936. Pei Liu, Wei-Chiao Huang, Hao Chen. 2020. Can the National Green Industrial Policy Improve Production Efficiency of Enterprises?—Evidence from China. *Sustainability* **12**:17, 6839. [Crossref]

938. Weiqing Li, Huaping Sun, Dang Khoa Tran, Farhad Taghizadeh-Hesary. 2020. The Impact of Environmental Regulation on Technological Innovation of Resource-Based Industries. *Sustainability* **12**:17, 6837. [Crossref]

939. Xiaoxiao Zhou, Ming Xia, Teng Zhang, Juntao Du. 2020. Energy- and Environment-Biased Technological Progress Induced by Different Types of Environmental Regulations in China. *Sustainability* **12**:18, 7486. [Crossref]

940. Halil Altıntaş, Yacouba Kassouri. 2020. The impact of energy technology innovations on cleaner energy supply and carbon footprints in Europe: A linear versus nonlinear approach. *Journal of Cleaner Production* 124140. [Crossref]

945. Mara Madaleno, Margarita Robaina, Marta Ferreira Dias, Monica Meireles. Eco-innovation and firm performance in European highly energy consumers and polluting sectors 1-6. [Crossref]

948. Chulin Pan, Hongpeng Guo, Yufeng Jiang, Hanying Wang, Weihong Qi. 2020. The double effects of female executives’ participation on corporate sustainable competitive advantage through unethical
environmental behavior and proactive environmental strategy. *Business Strategy and the Environment* 29:6, 2324-2337. [Crossref]

957. Eric Brouillat, Maïder Saint Jean. 2020. Mind the gap: Investigating the impact of implementation gaps on cleaner technology transition. *Technological Forecasting and Social Change* 158, 120145. [Crossref]

961. Dayuan Li, Fei Tang, Lu Zhang. 2020. Differential effects of voluntary environmental programs and mandatory regulations on corporate green innovation. *Natural Hazards* 103:3, 3437-3456. [Crossref]

963. Suling Feng, Haoyue Wu, Guoxiang Li, Liping Li, Wenting Zhou. 2020. CONVERGENCE ANALYSIS OF ENVIRONMENTAL EFFICIENCY FROM THE PERSPECTIVE OF ENVIRONMENTAL REGULATION: EVIDENCE FROM CHINA. *Technological and Economic Development of Economy* 26:5, 1074-1097. [Crossref]

966. Fabrizio Fusillo, Francesco Quatraro, Stefano Usai. 2020. Going green: the dynamics of green technological alliances. *Economics of Innovation and New Technology* 29, 1-25. [Crossref]

968. Trong Tuan Luu. 2020. Integrating green strategy and green human resource practices to trigger individual and organizational green performance: the role of environmentally-specific servant leadership. *Journal of Sustainable Tourism* 28:8, 1193-1222. [Crossref]

970. Haochang Yang, Fengzhi Lu, Faming Zhang. 2020. Exploring the effect of producer services agglomeration on China’s energy efficiency under environmental constraints. *Journal of Cleaner Production* 263, 121320. [Crossref]

972. Mingliang Zhao, Fangyi Liu, Wei Sun, Xin Tao. 2020. The Relationship between Environmental Regulation and Green Total Productivity in China: An Empirical Study Based on the Panel Data of 177 Cities. *International Journal of Environmental Research and Public Health* 17:15, 5287. [Crossref]

973. Federica Ciccullo, Margherita Pero, Jonathan Gosling, Maria Caridi, Laura Purvis. 2020. When Sustainability Becomes an Order Winner: Linking Supply Uncertainty and Sustainable Supply Chain Strategies. *Sustainability* 12:15, 6009. [Crossref]

974. Nohora Mercado-Caruso, Marival Segarra-Oña, David Ovallos-Gazabon, Angel Peiró-Signes. 2020. Identifying Endogenous and Exogenous Indicators to Measure Eco-Innovation within Clusters. *Sustainability* 12:15, 6088. [Crossref]

979. Žiga Kotnik, Maja Klun, Renata Slabe-Erker. 2020. Identification of the Factors That Affect the Environmental Administrative Burden for Businesses. *Sustainability* 12:16, 6555. [Crossref]

984. Akihiro Otsuka. Determinants of Energy Demand Efficiency: Evidence from Japan’s Industrial Sector. [Crossref]

985. Beatriz Forés, Alba Puig-Denia, José María Fernández-Yáñez. On How to Leverage Green Technologies for Sustainability Performance in the Tourism Sector 163-188. [Crossref]

999. Michael Stein, Michele Acciaro. 2020. Value Creation through Corporate Sustainability in the Port Sector: A Structured Literature Analysis. Sustainability 12:14, 5504. [Crossref]

1000. Showkat Ahmad Busru, G. Shanmugasundaram, Shariq Ahmad Bhat. 2020. Corporate Governance an Imperative for Stakeholders Protection: Evidence from Risk Management of Indian Listed Firms. Business Perspectives and Research 8:2, 89-116. [Crossref]

1003. Alfio Cariola, Francesco Fasano, Maurizio La Rocca, Ekaterina Skatova. 2020. Environmental sustainability policies and the value of debt in EU SMEs: Empirical evidence from the energy sector. Journal of Cleaner Production 123133. [Crossref]

1006. Donald S. Siegel. 2020. Why Do Corporations Decide to Do Good?. Journal of Economics, Management and Religion 01:01, 2050003. [Crossref]

1007. Angel Peiró-Signes, Lluis Miret-Pastor, Marival Segarra-Oña. 2020. Effects of green certification and labelling on the Spanish fisheries industry. Aquaculture Reports 17, 100396. [Crossref]

1008. Simona Bigerna, Maria Chiara D’Errico, Paolo Polinori. 2020. Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis. Energy Policy 142, 111522. [Crossref]

1009. Guanglei Yang, Donglan Zha, Xiaojuan Wang, Qian Chen. 2020. Exploring the nonlinear association between environmental regulation and carbon intensity in China: The mediating effect of green technology. Ecological Indicators 114, 106309. [Crossref]

1017. Guoyou Qi, Hailiang Zou, Xuemei Xie. 2020. Governmental inspection and green innovation: Examining the role of environmental capability and institutional development. *Corporate Social Responsibility and Environmental Management* **27**:4, 1774-1785. [Crossref]

1021. Olga Maksimchukand, Tatyana Pershina. 2020. The city competitiveness taking into account the assessment of the comfort of population living. *IOP Conference Series: Materials Science and Engineering* **890**:1, 012185. [Crossref]

1023. Runtian Zhang, Jinye Li. 2020. Impact of incentive and selection strength on green technology innovation in Moran process. *PLOS ONE* **15**:6, e0235516. [Crossref]

1032. Xiang Deng, Li Li. 2020. Promoting or Inhibiting? The Impact of Environmental Regulation on Corporate Financial Performance—An Empirical Analysis Based on China. *International Journal of Environmental Research and Public Health* 17:11, 3828. [Crossref]

1036. Muyao Li, Jinsong Zhang, Ramakrishnan Ramanathan, Ruiqian Li. 2020. Opening the Black Box: The Impacts of Environmental Regulations on Technological Innovation. *International Journal of Environmental Research and Public Health* 17:12, 4365. [Crossref]

1041. Martijn van den Berge, Anet Weterings, Floor Alkemade. 2020. Do existing regional specialisations stimulate or hinder diversification into cleantech?. *Environmental Innovation and Societal Transitions* 35, 185–201. [Crossref]

1042. Yanhua Guo, Lianjun Tong, Lin Mei. 2020. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. *Journal of Cleaner Production* 258, 120584. [Crossref]

1043. Malin Song, Shuhong Wang, Hongyan Zhang. 2020. Could environmental regulation and R&D tax incentives affect green product innovation?. *Journal of Cleaner Production* 258, 120849. [Crossref]

1044. Shahla Asadi, Seyedeh OmSalameh Pourhashemi, Mehrbakhsh Nilashi, Rusli Abdullah, Sarminah Samad, Elaheh Yadegaridehkordi, Nahla Aljojo, Nor Shahidayah Razali. 2020. Investigating influence of green innovation on sustainability performance: A case on Malaysian hotel industry. *Journal of Cleaner Production* 258, 120860. [Crossref]

1047. Hong-li Tang, Jian-min Liu, Jun Mao, Jin-guang Wu. 2020. The effects of emission trading system on corporate innovation and productivity—empirical evidence from China’s SO2 emission trading system. *Environmental Science and Pollution Research* **27**:17, 21604-21620. [Crossref]

1055. Wei Li, Yongqin Xi, Shi Qiang Liu, Meijuan Li, Lei Chen, Xueping Wu, Songping Zhu, Mahmoud Masoud. 2020. An improved evaluation framework for industrial green development: Considering the underlying conditions. *Ecological Indicators* **112**, 106044. [Crossref]

1057. Wenqing Wu, Yongqian Liu, Chia-Huei Wu, Sang-Bing Tsai. 2020. An empirical study on government direct environmental regulation and heterogeneous innovation investment. *Journal of Cleaner Production* **254**, 120079. [Crossref]

1065. Ming Zhang, Xinran Sun, Wenwen Wang. 2020. Study on the effect of environmental regulations and industrial structure on haze pollution in China from the dual perspective of independence and linkage. *Journal of Cleaner Production* 256, 120748. [Crossref]

1067. Hui Zheng, Jingchen Zhang, Xin Zhao, Hairong Mu. 2020. Exploring the affecting mechanism between environmental regulation and economic efficiency: New evidence from China’s coastal areas. *Ocean & Coastal Management* 189, 105148. [Crossref]

1068. Teresa García-Marcos, Ferdous Zouaghi, Mercedes Sánchez. 2020. Do firms with different levels of environmental regulatory pressure behave differently regarding complementarity among innovation practices?. *Business Strategy and the Environment* 29:4, 1684-1694. [Crossref]

1069. Bingxin Zeng, Lei Zhu, Xing Yao. 2020. Policy choice for end-of-pipe abatement technology adoption under technological uncertainty. *Economic Modelling* 87, 121-130. [Crossref]

1071. Jian Zhang, Wei Zhang, Qi Song, Xin Li, Xuanting Ye, Yu Liu, Yawei Xue. 2020. Can energy saving policies drive firm innovation behaviors? - Evidence from China. *Technological Forecasting and Social Change* 154, 119953. [Crossref]

1075. Hong-li Tang, Jian-min Liu, Jin-guang Wu. 2020. The impact of command-and-control environmental regulation on enterprise total factor productivity: A quasi-natural experiment based on China’s “Two Control Zone” policy. *Journal of Cleaner Production* 254, 120011. [Crossref]

1076. Clara Brandi, Jakob Schwab, Axel Berger, Jean-Frédéric Morin. 2020. Do environmental provisions in trade agreements make exports from developing countries greener?. *World Development* 129, 104899. [Crossref]

1094. Tasneem Alsaati, Samir El-Nakla, Darin El-Nakla. 2020. Level of Sustainability Awareness among University Students in the Eastern Province of Saudi Arabia. *Sustainability* **12**:8, 3159. [Crossref]

1108. Nimisha Gaur, Navneet Sharma, Aditya Dahiya, Pooya Yadav, Himanshu Ojha, Ramesh K Goyal, Rakesh Kumar Sharma. Toxicity and Regulatory Concerns for Nanoformulations in Medicine 333-357. [Crossref]

1109. Tarek Bel Hadj. 2020. Effects of corporate social responsibility towards stakeholders and environmental management on responsible innovation and competitiveness. *Journal of Cleaner Production* **250**, 119490. [Crossref]

1110. Shenggang Ren, Wenjuan Wei, Helin Sun, Qinyi Xu, Yucai Hu, Xiaohong Chen. 2020. Can mandatory environmental information disclosure achieve a win-win for a firm’s environmental and economic performance?. *Journal of Cleaner Production* **250**, 119530. [Crossref]
1111. Wei Zhang, Weiwen Lin, Zhenpeng Li. 2020. How the growth rate influences low-carbon sustainable production performance under different disposabilities in China’s manufacturing industries?. *Journal of Cleaner Production* **249**, 119349. [Crossref]

1123. Bin Li, Lei Xu, Ron McIver, Qian Wu, Ailing Pan. 2020. Green M&A, legitimacy and risk-taking: evidence from China’s heavy polluters. *Accounting & Finance* **60**:1, 97-127. [Crossref]

1124. Binh Bui, Olayinka Moses, Muhammad N. Houqe. 2020. Carbon disclosure, emission intensity and cost of equity capital: multi-country evidence. *Accounting & Finance* **60**:1, 47-71. [Crossref]

1132. Mohaddesh Azimi, Feng Feng, Chongyang Zhou. 2020. Environmental policy innovation in China and examining its dynamic relations with air pollution and economic growth using SEM panel data. *Environmental Science and Pollution Research* **27**:9, 9987-9998. [Crossref]

1137. Rodrigo Lozano. 2020. Analysing the use of tools, initiatives, and approaches to promote sustainability in corporations. *Corporate Social Responsibility and Environmental Management* **27**:2, 982-998. [Crossref]

1139. Kazuma Murakami, Tatsuo Kimbara. The Relationship Between Shareholder Value and International Transfer of Environmental Management Practices 111-127. [Crossref]

1148. Haidong Yu, Juanjuan Zhao. 2020. The Impact of Environmental Conditions on Urban Eco-Sustainable Total Factor Productivity: A Case Study of 21 Cities in Guangdong Province, China. *International Journal of Environmental Research and Public Health* 17:4, 1329. [Crossref]

1152. Theo Notteboom, Larissa van der Lugt, Niels van Saase, Steve Sel, Kris Neyens. 2020. The Role of Seaports in Green Supply Chain Management: Initiatives, Attitudes, and Perspectives in Rotterdam, Antwerp, North Sea Port, and Zeebrugge. *Sustainability* 12:4, 1688. [Crossref]

1155. Yasuhiro Ogura. 2020. Policy as a “porter” of RE component export or import? Evidence from PV/ wind energy in OECD and BRICS. *Energy Economics* 86, 104630. [Crossref]

1156. Surender Kumar, Shunsuke Managi, Rakesh Kumar Jain. 2020. CO2 mitigation policy for Indian thermal power sector: Potential gains from emission trading. *Energy Economics* 86, 104653. [Crossref]

1160. Flávio de Miranda Ribeiro, Isak Kruglianskas. 2020. Critical factors for environmental regulation change management: Evidences from an extended producer responsibility case study. *Journal of Cleaner Production* 246, 119013. [Crossref]

1161. MARIT KLEMETSEN, KNUT EINAR ROSENDAHL, ANJA LUND JAKOBSEN. 2020. THE IMPACTS OF THE EU ETS ON NORWEGIAN PLANTS’ ENVIRONMENTAL AND ECONOMIC PERFORMANCE. *Climate Change Economics* 11:01, 2050006. [Crossref]

1173. Yuan Ma, Qiang Zhang, Hua Yin. 2020. Environmental management and labor productivity: The moderating role of quality management. *Journal of Environmental Management* 255, 109795. [Crossref]

1181. Christian Zambrano Murillo, Jesús Rafael Hechavarria Hernández, Maikel Leyva Vázquez. Multicriteria Analysis in the Proposed Environmental Management Regulations for Construction in Aurora, Guayas, Ecuador 101-113. [Crossref]

1182. Akintoye V. Adejumo, Simplice A. Asongu. Foreign Direct Investment, Domestic Investment and Green Growth in Nigeria: Any Spillovers? 839-861. [Crossref]

1183. Carlos A. Moreno-Camacho, Jairo R. Montoya-Torres, Anicia Jaegler. Designing a Sustainable Supply Chain Network 15-26. [Crossref]

1184. Voicu D. Dragomir. Practical Aspects of Environmental Strategy 33-73. [Crossref]

1185. Kathrin Ehling. Green, social and profitable – the role of front end of innovation decision making in achieving more sustainable new products 305-319. [Crossref]

1186. Daniel Jugend, Marco Antonio Paula Pinheiro, João Victor Rojas Luiz, Angelo Varandas Junior, Paulo Augusto Cauchick-Miguel. Achieving environmental sustainability with ecodesign practices and tools for new product development 179-207. [Crossref]

1187. Wadim Strielkowski. Sustainability off the smart grids 55-95. [Crossref]

1190. Kalpana, Rifat Azam, Nazia Parveen, Dig Vijay Singh, Zafar Azam. Generation and Management of Biomedical Waste 98-121. [Crossref]

1195. Zijing Liang, Yung-ho Chiu, Xinchun Li, Quan Guo, Yue Yun. 2020. Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon. *Sustainability* **12**(1), 175. [Crossref]

1198. Annabeth Aagaard. Drivers of Eco-Innovation and Leverage Through Sustainable Business Models 1-9. [Crossref]

1202. Liming Zhang, Li Yang, Fei Ye, Guichuan Zhou. Is Porter Hypothesis True or False? A Perspective Based on Environmental Strategic Orientation 721-738. [Crossref]

1204. Sonal Khurana, Bisma Mannan, Abid Haleem. Total Interpretive Structural Modelling of Critical Factors of Sustainable-Oriented Innovation for Indian Manufacturing MSMEs 95-106. [Crossref]

1207. Cecilia Chirieleison, Francesco Rizzi. Green Economy 1-6. [Crossref]

1208. Yolanda Mendoza Cavazos, Yesenia Sánchez Tovar, Mariana Zerón Felix. Carbon Inventories Implementation as Competitive Strategy in Mexican Industry 993-1007. [Crossref]

1209. Monalisa Haque. Determinants of Environmental Standards Adoption by Multinational Corporations: A Review of Extant Literature 179-211. [Crossref]

1211. Ali Esfahbodi, Yufeng Zhang. Sustainable Supply Chain Management in Developed vs. Emerging Economies: Evidence From the UK and China’s Manufacturing Industry 537-549. [Crossref]

1213. Knut Blind. Standardisierung als innovationspolitisches Instrument 1-12. [Crossref]

1214. Yelena Popova, Ilya Petrov. Impact of the Human Capital Factors on the Country Competitiveness 662-671. [Crossref]

1215. Johanna Kirjavainen, Natalia Saukkonen. Sustainable Competitiveness at the National, Regional, and Firm Levels 740-751. [Crossref]

1217. Veronika Galgánková. 2020. Competitiveness of V4 Countries Using the Global Competitiveness Index. *SHS Web of Conferences* 74, 06007. [Crossref]

1218. Arindam Chakrabarty, Mudang Tagiya, Shyamalee Sinha. Promoting Green Products Through E-Governance Ecosystem: An Exploratory Study 297-303. [Crossref]

1219. Anna Starodubova, Dilbar Sultanova, Albert Karimov. 2020. The concept of balanced development of waste management. *E3S Web of Conferences* 161, 01053. [Crossref]

1222. Syed Abdul Rehman Khan. Discussion on Green Supply Chain Management 167-240. [Crossref]

1223. Weijian Du, Mengjie Li. 2020. Influence of environmental regulation on promoting the low-carbon transformation of China’s foreign trade: Based on the dual margin of export enterprise. *Journal of Cleaner Production* **244**, 118687. [Crossref]

1224. Tiberio Daddi, Raimund Bleischwitz, Niccolò Maria Todaro, Natalia Marzia Gusmerotti, Maria Rosa De Giacomo. 2020. The influence of institutional pressures on climate mitigation and adaptation strategies. *Journal of Cleaner Production* **244**, 118879. [Crossref]

1225. Xu Li. CAFC-NEV Mandate, Manufacturer Heterogeneity and Technology Innovation Strategy 563-576. [Crossref]

1227. ###. 2020. Does Air Pollution Force the Innovation of Ecological Technology?—Based on Threshold Effect Test. *Sustainable Development* **10**:03, 368-380. [Crossref]

1229. Kenneth Button. Boulding, Brundtland, Economics, and Efforts to Integrate Air Transportation Policies into Sustainable Development 29-54. [Crossref]

1230. Zafer Adiguzel. Examination of Effects of Competitiveness on Businesses and Countries 99-123. [Crossref]

1231. Akihiro Otsuka. Energy Intensity and Population Density in Japan 233-252. [Crossref]

1234. Patrizia Accordino. Fiscal Policy for Sustainable Development: The Italian Way to Promote Innovative Entrepreneurship According to European Union Rules 201-219. [Crossref]

1239. Canfei He, Xiyan Mao. Do Environmental Regulations Affect Air Quality and SO2 Emissions? 117-140. [Crossref]
1240. Canfei He, Xiyan Mao. Developing Environmental Economic Geography 17–55. [Crossref]
1241. Canfei He, Xiyan Mao. Does Export Upgrading Improve Urban Environment? 269–291. [Crossref]
1242. Julia Puaschunder. Behavioral Economics 3–42. [Crossref]
1244. Shefali Nandan, Jyoti. Organizational Culture Dimensions as Drivers of Employee Engagement for Business Sustainability: Towards a Conceptual Framework 109–132. [Crossref]
1245. Moriah Bostian, Tommy Lundgren. Production and the Environment 1–26. [Crossref]
1251. Rui Dai, Rui Duan, Lilian Ng. 2020. Do Environmental Regulations Do More Harm Than Good? Evidence from Competition and Innovation. *SSRN Electronic Journal* 120. [Crossref]
1253. Zhanna Belyaeva, Yana Lopatkova. The Impact of Digitalization and Sustainable Development Goals in SMEs’ Strategy: A Multi-Country European Study 15–38. [Crossref]

1262. Gurudas Nulkar. Fostering Environmental Performance Management within Indian SMEs 1404-1418. [Crossref]

1263. Eduardo Terán-Yépez, Gema M. Marin-Carrillo, M. Pilar Casado-Belmonte, Maria de las Mercedes Capobianco-Uriarte. The Role of Innovation in Sustainable Entrepreneurship 1-27. [Crossref]

1264. Fan Sheng, Baoshan Ge, Shiyong Zhang, Xinyu Liu. Sustainable Entrepreneurship Guided by Policy Support in a Transitional Economy 276-301. [Crossref]

1265. Martha Davis. Consumer Privacy Regulations 222-238. [Crossref]

1267. Arthur Caré. Tale Me, Green Innovation for the Textile Industry 101-129. [Crossref]

1273. Muhammad Salman, Xingle Long, Lamini Dauda, Claudia Nyarko Mensah. 2019. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. *Journal of Cleaner Production* 241, 118331. [Crossref]

1279. Haoran Zhang, Rongxia Zhang, Guomin Li, Wei Li, Yongrok Choi. 2019. Sustainable Feasibility of Carbon Trading Policy on Heterogenetic Economic and Industrial Development. *Sustainability* **11:**23, 6869. [Crossref]

1280. Heiseung Kim, Changhyun Park, Heesang Lee. 2019. The Effect of Incremental Innovation and Switching-Over to Architectural Innovation on the Sustainable Performance of Firms: The Case of the NAND Flash Memory Industry. *Sustainability* **11:**24, 7105. [Crossref]

1286. Lucien Georgeson, Mark Maslin. 2019. Estimating the scale of the US green economy within the global context. *Palgrave Communications* **5:**1. [Crossref]

1290. Yi, Fang, Wen, Guang, Zhang. 2019. The Heterogeneous Effects of Different Environmental Policy Instruments on Green Technology Innovation. *International Journal of Environmental Research and Public Health* **16:**23, 4660. [Crossref]

1292. Fei Yang, Beibei Shi, Ming Xu, Chen Feng. 2019. Can reducing carbon emissions improve economic performance – evidence from China. *Economics* **13:**1. [Crossref]

1294. Lynnette Dray, Khan Doyme. 2019. Carbon leakage in aviation policy. *Climate Policy* **19:**10, 1284-1296. [Crossref]
1297. Danny Z. X. Huang. 2019. Environmental, social and governance (ESG) activity and firm performance: a review and consolidation. *Accounting & Finance* 25. [Crossref]

1298. Xubin Lei, Shusheng Wu. 2019. Nonlinear Effects of Governmental and Civil Environmental Regulation on Green Total Factor Productivity in China. *Advances in Meteorology* 2019, 1-10. [Crossref]

1301. Inmaculada Martínez-Zarzoso, Aurelia Bengoechea-Moranco, Rafael Morales-Lage. 2019. Does environmental policy stringency foster innovation and productivity in OECD countries?. *Energy Policy* 134, 110982. [Crossref]

1302. Natasha Hazarika, Xiaoling Zhang. 2019. Factors that drive and sustain eco-innovation in the construction industry: The case of Hong Kong. *Journal of Cleaner Production* 238, 117816. [Crossref]

1303. Guoxing Zhang, Peide Zhang, Zhe George Zhang, Jiexun Li. 2019. Impact of environmental regulations on industrial structure upgrading: An empirical study on Beijing-Tianjin-Hebei region in China. *Journal of Cleaner Production* 238, 117848. [Crossref]

1308. Li Sun, Brian Walkup, Kean Wu. 2019. Sales order backlog and corporate social responsibility. *Advances in Accounting* 47, 100444. [Crossref]

1312. Ananya Bhattacharya, Alka Nand, Pavel Castka. 2019. Lean-green integration and its impact on sustainability performance: A critical review. *Journal of Cleaner Production* 236, 117697. [Crossref]

1313. Meng Tian, Guohu Xu, Linzi Zhang. 2019. Does environmental inspection led by central government undermine Chinese heavy-polluting firms’ stock value? The buffer role of political connection. *Journal of Cleaner Production* 236, 117695. [Crossref]
1314. Tu, Zhou, Zhang. 2019. Does China's Pollution Levy Standards Reform Promote Green Growth?. *Sustainability* **11**:21, 6186. [Crossref]
1318. Gabriel Sam Ahinful, Venancio Tauringana. Environmental Management Practices and Financial Performance of SMEs in Ghana **127**–157. [Crossref]
1319. Ola Flaten, Matthias Koesling, Sissel Hansen, Asbjørn Veidal. 2019. Links between profitability, nitrogen surplus, greenhouse gas emissions, and energy intensity on organic and conventional dairy farms. *Agroecology and Sustainable Food Systems* **43**:9, 957-983. [Crossref]
1323. Qiong Yao, Jinxin Liu, Shibin Sheng, Heng Fang. 2019. Does eco-innovation lift firm value? The contingent role of institutions in emerging markets. *Journal of Business & Industrial Marketing* **34**:8, 1763-1778. [Crossref]
1325. Xiguang Cao, Min Deng, Fei Song, Shihu Zhong, Junhao Zhu. 2019. Direct and moderating effects of environmental regulation intensity on enterprise technological innovation: The case of China. *PLOS ONE* **14**:10, e0223175. [Crossref]
1327. Pengfei Hei, Tingting Yang, Jindong Song, Jin Zhang, Wenqiang Liu, Gang Zhou, Jing Yang, Chunlan Liu. 2019. Integration of cleaner production (CP) and sustainable supply chain management (SSCM): CP + SSCM → CPSSCM –Inspired from impacts of Cleaner production on China’s macrophyte-dominated eutrophic lakes. *Journal of Cleaner Production* **234**, 1446-1458. [Crossref]
1332. Kyle S. Herman, Jun Xiang. 2019. Induced innovation in clean energy technologies from foreign environmental policy stringency?. *Technological Forecasting and Social Change* 147, 198-207. [Crossref]

1338. Azar Shahgholian. 2019. Unpacking the relationship between environmental profile and financial profile; literature review toward methodological best practice. *Journal of Cleaner Production* 233, 181-196. [Crossref]

1340. Xia Chen, Yin E. Chen, Chun-Ping Chang. 2019. The effects of environmental regulation and industrial structure on carbon dioxide emission: a non-linear investigation. *Environmental Science and Pollution Research* 26:29, 30252-30267. [Crossref]

1352. Sophie Boutillier. 2019. Small Entrepreneurship, Knowledge and Social Resources in a Heavy Industrial Territory. The Case of Eco-Innovations in Dunkirk, North of France. Journal of the Knowledge Economy 10:3, 997-1018. [Crossref]

1355. Li Li, Xuemin Liu, Jiaoju Ge, Xianghua Chu, Jun Wang. 2019. Regional differences in spatial spillover and hysteresis effects: A theoretical and empirical study of environmental regulations on haze pollution in China. Journal of Cleaner Production 230, 1096-1110. [Crossref]

1356. Grazielle Fatima Gomes Teixeira, Osiris Canciglieri Junior. 2019. How to make strategic planning for corporate sustainability?. Journal of Cleaner Production 230, 1421-1431. [Crossref]

1357. Jingyan Fu, Yanyun Geng. 2019. Public participation, regulatory compliance and green development in China based on provincial panel data. Journal of Cleaner Production 230, 1344-1353. [Crossref]

1358. Najid Ahmad, Hong-Zhou Li, Xian-Liang Tian. 2019. Increased firm profitability under a nationwide environmental information disclosure program? Evidence from China. Journal of Cleaner Production 230, 1176-1187. [Crossref]

1360. L. Suganthi. 2019. Examining the relationship between corporate social responsibility, performance, employees' pro-environmental behavior at work with green practices as mediator. Journal of Cleaner Production 232, 739-750. [Crossref]

1364. Congxin Li, Guozhu Li, Zining Li. 2019. The threshold effect of the efficiency of science and technological services on regional environmental governance in China. Growth and Change 50:3, 1026-1042. [Crossref]

1365. Mariusz Soltysik, Maria Urbaniec, Magdalena Wojnarowska. 2019. Innovation for Sustainable Entrepreneurship: Empirical Evidence from the Bioeconomy Sector in Poland. Administrative Sciences 9:3, 50. [Crossref]

1376. Peng Hu, Die Hu, Xue Yang. Disentangle the Environmental Regulation-Innovation Relationship from the view of Portfolio 1-6. [Crossref]

1381. Wenlong He, Rui Shen. 2019. ISO 14001 Certification and Corporate Technological Innovation: Evidence from Chinese Firms. *Journal of Business Ethics* **158**:1, 97-117. [Crossref]

1384. James Di Filippo, Jason Karpman, J.R. DeShazo. 2019. The impacts of policies to reduce CO2 emissions within the concrete supply chain. Cement and Concrete Composites 101, 67-82. [Crossref]

1386. Silvia Bertarelli, Chiara Lodi. 2019. Heterogeneous firms, exports and pigouvian pollution tax: Does the abatement technology matter?. Journal of Cleaner Production 228, 1099-1110. [Crossref]

1390. ABEL DUARTE ALONSO, SENG K. KOK, SEAMUS O’BRIEN. 2019. UNDERSTANDING APPROACHES TO INNOVATION THROUGH THE DYNAMIC CAPABILITIES LENS: A MULTI-COUNTRY STUDY OF THE WINE INDUSTRY. International Journal of Innovation Management 23:06, 1950054. [Crossref]

1392. Takatoshi MATSUSHITA, Jun HASHIMOTO. 2019. Regulations and Standards on Lightning Protection for Wind Turbine Generation System. The Journal of The Institute of Electrical Engineers of Japan 139:8, 534-537. [Crossref]

1394. Ferri, Pini. 2019. Environmental vs Social Responsibility in the Firm. Evidence from Italy. Sustainability 11:16, 4277. [Crossref]

1395. Chengliang Liu, Tao Wang, Qingbin Guo. 2019. Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China. Sustainability 11:16, 4353. [Crossref]

1396. Maria Luisa Pajuelo Moreno, Teresa Duarte-Atoche. 2019. Relationship between Sustainable Disclosure and Performance—An Extension of Ullmann’s Model. Sustainability 11:16, 4411. [Crossref]

1397. Priscila Koeller, Pedro Miranda, Maria Cecília Lustosa, Gabriela Podcameni. Ecoinovação: revisitando o conceito 695-712. [Crossref]

1398. Stela Luiza de Mattos Ansanelli, Israel Guratti, Matheus Gonçalves Cintrão, Alexandre Sartoris Neto. Fatores Determinantes da Ecoinovação no Complexo Eletrônico Brasileiro 713-718. [Crossref]

1403. Lydia Avrami, Detlef F. Sprinz. 2019. Measuring and explaining the EU’s effect on national climate performance. *Environmental Politics* **28**:5, 822–846. [Crossref]

1414. Tiberio Daddi, Domenico Ceglia, Guia Bianchi, Marcia Dutra de Barcellos. 2019. Paradoxical tensions and corporate sustainability: A focus on circular economy business cases. *Corporate Social Responsibility and Environmental Management* **26**:4, 770–780. [Crossref]

1415. Yann Braouezec, Robert Joliet. 2019. Time to invest in corporate social responsibility and the value of CSR operations: The case of environmental externalities. *Managerial and Decision Economics* **40**:5, 539–549. [Crossref]

1426. Yingying Zhou, Yaru Xu, Chuanze Liu, Zhuoqing Fang, Xinyue Fu, Mingzhao He. 2019. The Threshold Effect of China’s Financial Development on Green Total Factor Productivity. *Sustainability* **11**:14, 3776. [Crossref]

1428. Na Wang, Yongrok Choi. 2019. Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model. *Sustainability* **11**:14, 3895. [Crossref]

1432. Yan Song, Tingting Yang, Ming Zhang. 2019. Research on the impact of environmental regulation on enterprise technology innovation—an empirical analysis based on Chinese provincial panel data. *Environmental Science and Pollution Research* **26**:21, 21835-21848. [Crossref]
1433. Suxia Liu, Yingming Zhu, Weiqiang Wang, Yu Pei, Kuanqi Du. 2019. The Environmental Pollution Effects of Industrial Agglomeration. *International Journal of Agricultural and Environmental Information Systems* 10:3, 14-29. [Crossref]

1434. Magnus Lindmark. Rethinking the Environmental State: An Economic History of the Swedish Environmental Kuznets Curve for Carbon 139-164. [Crossref]

1436. Aideen O'Dochartaigh. 2019. No more fairytales: a quest for alternative narratives of sustainable business. *Accounting, Auditing & Accountability Journal* 32:5, 1384-1413. [Crossref]

1439. Ifeanyi Okpala, Chukwuma Nnaji, Ibukun Awolusi. Reality Capture Technologies (LiDAR, RGB-D, Vision) 153-161. [Crossref]

1443. Amina Buallay. 2019. Between cost and value. *Journal of Applied Accounting Research* 2. . [Crossref]

1449. Stuart J. Barnes. 2019. Understanding plastics pollution: The role of economic development and technological research. *Environmental Pollution* 249, 812-821. [Crossref]

1451. Gastón de los Reyes, Markus Scholz. 2019. The limits of the business case for sustainability: Don’t count on ‘Creating Shared Value’ to extinguish corporate destruction. *Journal of Cleaner Production* 221, 785-794. [Crossref]
1452. Wei Li, Jue Wang, Rongxiao Chen, Yongqin Xi, Shi Qiang Liu, Feimei Wu, Mahmoud Masoud, Xueping Wu. 2019. Innovation-driven industrial green development: The moderating role of regional factors. *Journal of Cleaner Production* **222**, 344-354. [Crossref]

1453. Yong Du, Ziyi Li, Jun Du, Ning Li, Bo Yan. 2019. Public environmental appeal and innovation of heavy-polluting enterprises. *Journal of Cleaner Production* **222**, 1009-1022. [Crossref]

1468. Li Sun. 5 Environmental Efficiency, Firm Efficiency, and Managerial Ability 105-138. [Crossref]

1471. Lorenzo Squintani. Beyond Minimum Harmonisation 5, . [Crossref]

1472. Xiongfeng Pan, Xianyou Pan, Changyu Li, Jinbo Song, Jing Zhang. 2019. Effects of China’s environmental policy on carbon emission efficiency. *International Journal of Climate Change Strategies and Management* 11:3, 326-340. [Crossref]

1473. Amal Hamrouni, Rim Boussaada, Nadia Ben Farhat Toumi. 2019. Corporate social responsibility disclosure and debt financing. *Journal of Applied Accounting Research* 1.. [Crossref]

1478. Yi-Chuan Liao, Kuen-Hung Tsai. 2019. Bridging market demand, proactivity, and technology competence with eco-innovations: The moderating role of innovation openness. *Corporate Social Responsibility and Environmental Management* 26:3, 653-663. [Crossref]

1482. Maria Savona, Tommaso Ciarli. 2019. Structural Changes and Sustainability. A Selected Review of the Empirical Evidence. *Ecological Economics* 159, 244-260. [Crossref]

1484. Shuo Wang, Henry An. 2019. Technical change and productivity growth in the Alberta logging industry. *Forest Policy and Economics* 102, 130-137. [Crossref]

1485. Rajabrata Banerjee, Kartick Gupta, Ron McIver. 2019. What matters most to firm-level environmentally sustainable practices: Firm–specific or country–level factors?. *Journal of Cleaner Production* 218, 225-240. [Crossref]

1486. Jichuan Sheng, Weihai Zhou, Sanfeng Zhang. 2019. The role of the intensity of environmental regulation and corruption in the employment of manufacturing enterprises: Evidence from China. *Journal of Cleaner Production* 219, 244-257. [Crossref]

1490. Rachel Hilliard, Don Goldstein. 2019. Identifying and measuring dynamic capability using search routines. *Strategic Organization* **17**:2, 210-240. [Crossref]

1492. Min Xue, Francis Boadu, Yu Xie. 2019. The Penetration of Green Innovation on Firm Performance: Effects of Absorptive Capacity and Managerial Environmental Concern. *Sustainability* **11**:9, 2455. [Crossref]

1500. Iveta Musilová. 2019. The Relationship between Strategy and Competitiveness in Breweries - A Pilot Study. *Acta Oeconomica Pragensia* **27**:1, 70-88. [Crossref]

1502. Suresh Kumar Jakhar, Sachin Kumar Mangla, Sunil Luthra, Simonov Kusi-Sarpong. 2019. When stakeholder pressure drives the circular economy. *Management Decision* **57**:4, 904-920. [Crossref]

1504. Rebekka Schütte, Holger Bergmann. 2019. The attitudes of French and Spanish winegrowers towards the use of cover crops in vineyards. *Journal of Wine Research* **30**:2, 107-121. [Crossref]

1506. Marie-France Waxin, Sandra L. Knuteson, Aaron Bartholomew. 2019. Drivers and challenges for implementing ISO 14001 environmental management systems in an emerging Gulf Arab country. *Environmental Management* **63**:4, 495-506. [Crossref]

1508. Alessandra Colombelli, Francesco Quatraro. 2019. Green start-ups and local knowledge spillovers from clean and dirty technologies. *Small Business Economics* **52**:4, 773-792. [Crossref]

1509. Riccardo Leoncini, Alberto Marzucchi, Sandro Montresor, Francesco Rentocchini, Ugo Rizzo. 2019. ‘Better late than never’: the interplay between green technology and age for firm growth. *Small Business Economics* **52**:4, 891-904. [Crossref]

1517. Enrico Maria de Angelis, Marina Di Giacomo, Davide Vannoni. 2019. Climate Change and Economic Growth: The Role of Environmental Policy Stringency. *Sustainability* **11**:8, 2273. [Crossref]

1523. Marianna Marino, Pierpaolo Parrotta, Giacomo Valletta. 2019. Electricity (de)regulation and innovation. *Research Policy* **48**:3, 748-758. [Crossref]

1530. Jeongeun Sim, Fouad El Ouardighi, Bowon Kim. 2019. Economic and environmental impacts of vertical and horizontal competition and integration. *Naval Research Logistics (NRL)* **66**:2, 133-153. [Crossref]

1538. Kirsten A. Cook, Andrea M. Romi, Daniela Sánchez, Juan Manuel Sánchez. 2019. The influence of corporate social responsibility on investment efficiency and innovation. *Journal of Business Finance & Accounting* **46**:3-4, 494-537. [Crossref]

1550. Jeannette A. Mena, G. Tomas M. Hult, O.C. Ferrell, Yufei Zhang. 2019. Competing assessments of market-driven, sustainability-centered, and stakeholder-focused approaches to the customer-brand relationships and performance. *Journal of Business Research* 95, 531–543. [Crossref]

1552. Mariú Abritta Moro, Maj Munch Andersen, Barth F. Smets, Ursula S. McKnight. 2019. National innovative capacity in the water sector: A comparison between China and Europe. *Journal of Cleaner Production* 210, 325–342. [Crossref]

1553. Xuehong Zhu, Anqi Zeng, Meirui Zhong, Jianbai Huang, Hongping Qu. 2019. Multiple impacts of environmental regulation on the steel industry in China: A recursive dynamic steel industry chain CGE analysis. *Journal of Cleaner Production* 210, 490–504. [Crossref]

1556. Lu Zhang, Cuicui Cao, Fei Tang, Jiaxin He, Dayuan Li. 2019. Does China’s emissions trading system foster corporate green innovation? Evidence from regulating listed companies. *Technology Analysis & Strategic Management* 31:2, 199–212. [Crossref]
1557. Evangelia Sdrolia, Grigoris Zarotiadis. 2019. A COMPREHENSIVE REVIEW FOR GREEN PRODUCT TERM: FROM DEFINITION TO EVALUATION. *Journal of Economic Surveys* **33**:1, 150-178. [Crossref]

1560. Hyoun Seok Lee, Yongrok Choi. 2019. Environmental Performance Evaluation of the Korean Manufacturing Industry Based on Sequential DEA. *Sustainability* **11**:3, 874. [Crossref]

1561. Chun Jiang, Qiang Fu. 2019. A Win-Win Outcome between Corporate Environmental Performance and Corporate Value: From the Perspective of Stakeholders. *Sustainability* **11**:3, 921. [Crossref]

1573. Flavia Cristina Silva, Fabio Ytoshi Shibao, Isak Kruglianskas, José Carlos Barbieri, Paulo Antonio Almeida Sinigalli. 2019. Circular economy: analysis of the implementation of practices in the Brazilian network. *Revista de Gestão* **26**:1, 39-60. [Crossref]
1574. Fábio Lotti Oliva, Bárbara Ilze Semensato, Daniela Buzzulini Prioste, Eric Jacques Lucien Winandy, Jefferson Luiz Bution, Marcelo Henrique Gomes Couto, Marco Antonio Bottacin, Maria Laura Ferranty Mac Lennan, Pedro Marins Freire Teberga, Ricardo Fernandes Santos, Sanjay Kumar Singh, Sidirley Fabiani da Silva, Silvye Ane Massaini. 2019. Innovation in the main Brazilian business sectors: characteristics, types and comparison of innovation. *Journal of Knowledge Management* 23:1, 135-175. [Crossref]

1575. Johann Dupuis, Remi Schweizer. 2019. Climate pushers or symbolic leaders? The limits to corporate climate leadership by food retailers. *Environmental Politics* 28:1, 64-86. [Crossref]

1576. Per Ove Eikeland, Jon Birger Skjærseth. 2019. Oil and power industries' responses to EU emissions trading: laggards or low-carbon leaders?. *Environmental Politics* 28:1, 104-124. [Crossref]

1577. Jialing Lin, Antonio Lobo, Civilai Leckie. 2019. The influence of green brand innovativeness and value perception on brand loyalty: the moderating role of green knowledge. *Journal of Strategic Marketing* 27:1, 81-95. [Crossref]

1580. Adrian Pyszka. Corporate Social Responsibility as a Source of Innovation: Company Practices in Poland 329-347. [Crossref]

1581. Rosella Carè, Antonio Fabio Forgione. Assessing the Relationship Between Environmental Performance and Banks' Performance: Preliminary Evidence 61-85. [Crossref]

1582. Mia Mahmudur Rahim. Converged Approach in Regulation for Socializing Transnational Corporations 155-184. [Crossref]

1583. Shobod Deba Nath, Gabriel Eweje, Ralph Bathurst. Why Supply Chain Sustainability Matters for Developing Countries' Apparel Suppliers? An Integrated Framework 187-206. [Crossref]

1584. Claude Njomgang. Some Theoretical and Policy Issues in Green Economy 7-26. [Crossref]

1585. Aymen Sajjad. Greening the Supply Chain: A Framework for Best Practices 191-209. [Crossref]

1586. Rifath Ali, Troy Rawlins. Investigations: Environmental Pollution Dumping 1-7. [Crossref]

1587. Johanna Kirjavainen, Natalia Saukkonen. Sustainable Competitiveness at the National, Regional, and Firm Levels 1-12. [Crossref]

1588. Ramakrishnan Ramanathan. Flexibility of Environmental Regulations and the Impact on Operations Innovation 27-42. [Crossref]

1589. Tommy Lundgren, Lammertjan Dam, Bert Scholtens. Sustainable Business Practices—An Environmental Economics Perspective 205-229. [Crossref]

1590. Li Zou, Xiaoqin Li. Research on the Financial Performance Evaluation of Chongqing Listed Companies in Strategic Emerging Industries 1683-1694. [Crossref]

1591. Xiang Wang, Yanjia Li, Yuandi Wang. Testing the Dynamic Nature of Porter Hypothesis: Evidence from the Chinese Industrial Sectors 663-674. [Crossref]

1592. Laura Albareda, Arash Hajikhani. Innovation for Sustainability: Literature Review and Bibliometric Analysis 35-57. [Crossref]

1593. J. S. Thompson, S. Walton, O. Hassan, J. Sienz. Applying the Modified Cuckoo Search to the Customisation of an Industrial Pre-mixer 1398-1408. [Crossref]

1594. Taih-Cherng Lirn, Christina W. Y. Wong, Kuo-Chung Shang, Ya-Ting Li. Identifying Green Assessment Criteria for Shipping Industries 21-44. [Crossref]
1613. Malcolm S. Salter. 2019. Rehabilitating Corporate Purpose. SSRN Electronic Journal . [Crossref]
1616. Stephen Wearing, Kevin Lyons, Stephen Schweinsberg. Using Corporate Sustainability and Responsibility as a Transition to Shared Value for the Sharing Economy (SE) 97-116. [Crossref]
1617. K. Hervé Dakpo, Frederic Ang. Modelling Environmental Adjustments of Production Technologies: A Literature Review 601-657. [Crossref]
1618. Canfei He, Shengjun Zhu. How Do Environmental Regulations Affect Industrial Dynamics in China? 231-249. [Crossref]
1619. Jean Noël Ouraga Breka, Monyédodo Régis Kpossa. 2019. Les obstacles à la mise en place de l’économie de fonctionnalité : le cas du secteur de l’électroménager. Question(s) de management n°24:2, 27. [Crossref]
1620. Daniel Balsalobre-Lorente, Muhammad Shahbaz, Charbel Jose Chiappetta Jabbour, Oana M. Driha. The Role of Energy Innovation and Corruption in Carbon Emissions: Evidence Based on the EKC Hypothesis 271-304. [Crossref]
1621. Sevil Acar, A. Erinç Yeldan. Introduction xiii–xvii. [Crossref]
1622. Israel Msengi, Raymond Doe, Twana Wilson, Danny Fowler, Chelsey Wigginton, Sarah Olorunyomi, Isaiah Banks, Raquel Morel. 2019. Assessment of knowledge and awareness of “sustainability” initiatives among college students. Renewable Energy and Environmental Sustainability 4, 6. [Crossref]
1623. Marco Bertini, Stefan Buehler, Daniel Halbheer, Donald R. Lehmann. 2019. Carbon Footprinting and Pricing Under Climate Concerns. SSRN Electronic Journal . [Crossref]
1624. Yudi Fernando, Muhammad Shabir Shaharudin, Wah Wen Xin. Eco-Innovation Enablers and Typology in Green Furniture Manufacturing 379-394. [Crossref]
1625. Gurudas Nulkar. Environmental Sustainability Practices for SMEs 989-1008. [Crossref]
1626. Selin Kucukkancabas Esen, Sahar Sobhy El Barky. Drivers and Barriers to Green Supply Chain Management Practices 1244-1271. [Crossref]
1628. Deniz Güvercin. The Benefits and Costs of Foreign Direct Investment for Sustainability in Emerging Market Economies 39-59. [Crossref]
1629. Begum Sertyesilisik. Political Economy of the Green Innovations in the Construction Industry 355-374. [Crossref]
1630. João Bento, Miguel Torres, Paolo Maranzano. Outward US Foreign Direct Investment and Environmental Degradation 252-268. [Crossref]
1631. Sumit K. Majumdar, Geng Sun. 2019. Incentive Regulation and Capital Structure in Digital Networks: Theory, Evidence and Implications. SSRN Electronic Journal . [Crossref]

1661. Jose Antonio Pascual, Ana Belen Morales, Luis Miguel Ayuso, Pedro Segura, Margarita Ros. 2018. Characterisation of sludge produced by the agri-food industry and recycling options for its agricultural uses in a typical Mediterranean area, the Segura River basin (Spain). *Waste Management* 82, 118-128. [Crossref]

1662. FREDERIC TOURNEMAINE, CHRISTOPHER TSOUKIS. 2018. THE GREAT TRANSITION: IMPLICATIONS FROM ENVIRONMENTAL POLICY FOR THE QUALITY–QUANTITY TRADE-OFF IN CHILDREN-REARING. *The Singapore Economic Review* 63:05, 1155-1174. [Crossref]

1663. Boris Herbas Torrico, Björn Frank, Carlos Arandia Tavera. 2018. Corporate social responsibility in Bolivia: meanings and consequences. *International Journal of Corporate Social Responsibility* 3:1. [Crossref]

1665. ###, ###. 2018. Can’t environmental regulation be voluntary?: Logic and Effectiveness of Voluntary Environmental Agreement. *Korean Public Management Review* 32:4, 79-98. [Crossref]

1667. Sandile Ndwandwe, Ruey-Chee Weng. 2018. Competitive Analyses of the Pig Industry in Swaziland. *Sustainability* 10:12, 4402. [Crossref]

1673. Seyedesmaeil Mousavi, Bart Bossink, Mario van Vliet. 2018. Dynamic capabilities and organizational routines for managing innovation towards sustainability. *Journal of Cleaner Production* 203, 224-239. [Crossref]

1674. Yulin Liu, Zhihui Li, Xingmin Yin. 2018. Environmental regulation, technological innovation and energy consumption---a cross-region analysis in China. *Journal of Cleaner Production* 203, 885-897. [Crossref]

1677. Teodora Diana Corsatea, Sergio Giaccaria. 2018. Market regulation and environmental productivity changes in the electricity and gas sector of 13 observed EU countries. *Energy* 164, 1286-1297. [Crossref]

1681. I. Ketut Rahyuda, Agoes Ganesha Rahyuda, Henny Rahyuda, Made Reina Candradewi. 2018. The relationship between the concept of competitive advantage and the value of Catur Paramitha on SMEs in Sarbagita. *International Journal of Law and Management* 60:6, 1522-1538. [Crossref]

1683. Xiongfeng Pan, Xianyou Pan, Yang Ming, Jing Zhang. 2018. The effect of regional mitigation of carbon dioxide emission on energy efficiency in China, based on a spatial econometrics approach. *Carbon Management* 9:6, 665-676. [Crossref]
1684. Xiaodong Xu, Saixing Zeng, Hongquan Chen. 2018. Signaling good by doing good: How does environmental corporate social responsibility affect international expansion?. *Business Strategy and the Environment* **27**:7, 946-959. [Crossref]

1698. Enrico Colla. Risks, Strategic Options and Prospects for Commercial Distribution Faced with the Challenges of Sustainable Development 155-169. [Crossref]

1700. Xavier Vence, Ángeles Pereira. 2018. Eco-innovation and Circular Business Models as drivers for a circular economy. *Contaduría y Administración* **64**:1, 64. [Crossref]

1701. Jeroen C. J. M. van den Bergh. Human Evolution beyond Biology and Culture 1, . [Crossref]

1704. André Felipe Pereira da Silva, Risolene Alves de Macena Araújo, Lívia Maria Da Silva Santos. 2018. Relação da rentabilidade e o disclosure de provisões e passivos contingentes ambientais das empresas de alto potencial poluidor listadas na B3. *Revista Catarinense da Ciência Contábil* 17:52. [Crossref]

1705. Efthymia Korra, Ioannis Giotopoulos, Aggelos Tsakanikas. CSR Practices and SME Innovativeness in Greece 119-132. [Crossref]

1712. Umar Burki, Pervin Ersoy, Robert Dahlstrom. 2018. Achieving triple bottom line performance in manufacturer-customer supply chains: Evidence from an emerging economy. *Journal of Cleaner Production* 197, 1307-1316. [Crossref]

1715. Elias Erragragui. 2018. Do creditors price firms’ environmental, social and governance risks?. *Research in International Business and Finance* 45, 197-207. [Crossref]

1723. Xiang Cai, Xiahui Che, Bangzhu Zhu, Juan Zhao, Rui Xie. 2018. Will developing countries become pollution havens for developed countries? An empirical investigation in the Belt and Road. *Journal of Cleaner Production* **198**, 624-632. [Crossref]

1727. Maria Vittoria Franceschelli, Gabriele Santoro, Elena Candelo. 2018. Business model innovation for sustainability: a food start-up case study. *British Food Journal* **120**:10, 2483-2494. [Crossref]

1728. Davide Antonioli, Grazia Cecere, Massimiliano Mazzanti. 2018. Information communication technologies and environmental innovations in firms: joint adoptions and productivity effects. *Journal of Environmental Planning and Management* **61**:11, 1905-1933. [Crossref]

1734. Zhongju Liao, Siying Long. 2018. CEOs' regulatory focus, slack resources and firms' environmental innovation. *Corporate Social Responsibility and Environmental Management* **25**:5, 981-990. [Crossref]

1762. Yao Du, Lu Jiang, Yaodong Zhou. The Impact of Environmental Regulations on Private Investment Efficiency 1-6. [Crossref]

1766. V. Kumar, Ankit Anand, Nandini Nim. Assessing the Relative Impact of Major Sources of Innovation on the Brand Equity of a Firm 99-142. [Crossref]

1771. Xingle Long, Yusen Luo, Huaping Sun, Gang Tian. 2018. Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014. *Natural Hazards* **92**:3, 1573-1591. [Crossref]

1773. Yu Hao, Yuxin Deng, Zhi-Nan Lu, Hao Chen. 2018. Is environmental regulation effective in China? Evidence from city-level panel data. *Journal of Cleaner Production* 188, 966-976. [Crossref]

1777. Angela Triguero, Sara Fernández, Francisco J. Sáez-Martínez. 2018. Inbound open innovative strategies and eco-innovation in the Spanish food and beverage industry. *Sustainable Production and Consumption* 15, 49-64. [Crossref]

1787. Francisco José López-Arceiz, Ana José Bellostas-Pérezgrueso, José Mariano Moneva. 2018. Evaluation of the Cultural Environment’s Impact on the Performance of the Socially Responsible Investment Funds. *Journal of Business Ethics* 150:1, 259-278. [Crossref]

1791. Xiaoli Zhao, Ye Fan, Ming Fang, Zhanhu Hua. 2018. Do environmental regulations undermine energy firm performance? An empirical analysis from China’s stock market. *Energy Research & Social Science* 40, 220-231. [Crossref]

1792. Jerry Patchell. 2018. Can the implications of the GHG Protocol’s scope 3 standard be realized?. *Journal of Cleaner Production* 185, 941-958. [Crossref]

1794. Qian Wang, Baolong Yuan. 2018. Air pollution control intensity and ecological total-factor energy efficiency: The moderating effect of ownership structure. *Journal of Cleaner Production* 186, 373-387. [Crossref]

1795. Maruf Sanni. 2018. Drivers of eco-innovation in the manufacturing sector of Nigeria. *Technological Forecasting and Social Change* 131, 303-314. [Crossref]

1796. Shengnan Li, Jianbo Niu, Sang-Bing Tsai. 2018. Opportunism Motivation of Environmental Protection Activism and Corporate Governance: An Empirical Study from China. *Sustainability* 10:6, 1725. [Crossref]

1807. George Halkos, Antonis Skouloudis. 2018. Corporate social responsibility and innovative capacity: Intersection in a macro-level perspective. *Journal of Cleaner Production* **182**, 291-300. [Crossref]

1809. F. Cucchiella, I. D’Adamo, M. Gastaldi, M. Miliacca. 2018. Efficiency and allocation of emission allowances and energy consumption over more sustainable European economies. *Journal of Cleaner Production* **182**, 805-817. [Crossref]

1816. Michael Hadani, Jonathan P. Doh, Marguerite A. Schneider. 2018. Corporate Political Activity and Regulatory Capture: How Some Companies Blunt the Knife of Socially Oriented Investor Activism. *Journal of Management* **44**:5, 2064-2093. [Crossref]

1818. Anna Maria Biscotti, Eugenio D’Amico, Filippo Monge. 2018. Do environmental management systems affect the knowledge management process? The impact on the learning evolution and the relevance of organisational context. *Journal of Knowledge Management* **22**:3, 603-620. [Crossref]

1819. Enrico Colla. Chapitre 2. Risques, options stratégiques et perspectives du commerce face aux défis du développement durable 41-61. [Crossref]

1824. Minna Saunila, Juhani Ukko, Tero Rantala. 2018. Sustainability as a driver of green innovation investment and exploitation. *Journal of Cleaner Production* 179, 631-641. [Crossref]

1825. Marion Sautier, Katharine A. Legun, Christopher Rosin, Hugh Campbell. 2018. Sustainability: A tool for governing wine production in New Zealand?. *Journal of Cleaner Production* 179, 347-356. [Crossref]

1826. Petra Dickel, Jacob Hörisch, Thomas Ritter. 2018. Networking for the environment: The impact of environmental orientation on start-ups’ networking frequency and network size. *Journal of Cleaner Production* 179, 308-316. [Crossref]

1827. Xiaomeng Zhao, Chuanjiang Liu, Mian Yang. 2018. The effects of environmental regulation on China’s total factor productivity: An empirical study of carbon-intensive industries. *Journal of Cleaner Production* 179, 325-334. [Crossref]

1828. Tijs van den Broek, Anne Fleur van Veenstra. 2018. Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation. *Technological Forecasting and Social Change* 129, 330-338. [Crossref]

1831. Eric Brouillat, Maïder Saint Jean, Nabila Arfaoui. 2018. “Reach for the sky”: modeling the impact of policy stringency on industrial dynamics in the case of the REACH regulation. *Industrial and Corporate Change* 27:2, 289-320. [Crossref]

1834. Chaofan Chen, Qingxin Lan, Ming Gao, Yawen Sun. 2018. Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy. *Sustainability* 10:4, 1052. [Crossref]

1837. Gilles Barouch, Christoph Bey. 2018. Cost of quality and process model: Improving accounting tools for attaining higher environmental efficiency. *Journal of Cleaner Production* 181, 192-200. [Crossref]

1838. Barbara Iannone. 2018. Sustainability, Corporate Social Responsibility, and Corporate Reputation in the Wine Sector. *International Journal of Applied Behavioral Economics* 7:2, 47-68. [Crossref]

1845. Dayal S. Prasad, Rudra P. Pradhan, Kunal Gaurav, Partha P. Chatterjee, Inderpal Kaur, Saurav Dash, Sagar Nayak. 2018. Analysing the critical success factors for implementation of sustainable supply chain management: an Indian case study. *DECISION* 45:1, 3-25. [Crossref]

1846. Ana de Jesus, Sandro Mendonça. 2018. Lost in Transition? Drivers and Barriers in the Eco-innovation Road to the Circular Economy. *Ecological Economics* 145, 75-89. [Crossref]

1849. Will McDowall. 2018. Disruptive innovation and energy transitions: Is Christensen’s theory helpful?. *Energy Research & Social Science* 37, 243-246. [Crossref]

1850. Mariú Abritta Moro, Ursula S. McKnight, Barth F. Smets, Yang Min, Maj Munch Andersen. 2018. The industrial dynamics of water innovation: A comparison between China and Europe. *International Journal of Innovation Studies* 2:1, 14-32. [Crossref]

1852. Ramakrishnan Ramanathan, Usha Ramanathan, Yongmei Bentley. 2018. The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA. *Omega* 75, 131-138. [Crossref]

1858. Sara Segura, Luis Ferruz, Pilar Gargallo, Manuel Salvador. 2018. Environmental versus economic performance in the EU ETS from the point of view of policy makers: A statistical analysis based on copulas. Journal of Cleaner Production 176, 1111-1132. [Crossref]

1859. Baolong Yuan, Qiulian Xiang. 2018. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model. Journal of Cleaner Production 176, 895-908. [Crossref]

1862. Francesco Testa, Fabio Iraldo, Tiberio Daddi. 2018. The Effectiveness of EMAS as a Management Tool: A Key Role for the Internalization of Environmental Practices. Organization & Environment 31:1, 48-69. [Crossref]

1864. Diana H.A. Tsai. 2018. The effects of dynamic industrial transition on sustainable development. Structural Change and Economic Dynamics 44, 46-54. [Crossref]

1866. Andrea Szalavetz. 2018. Sustainability-oriented cross-functional collaboration to manage trade-offs and interdependencies. International Journal of Management and Economics 54:1, 3-17. [Crossref]

1867. Issam Laguir, Magalie Marais, Jamal El Baz, Rebecca Stekelorum. 2018. Reversing the business rationale for environmental commitment in banking. Management Decision 56:2, 358-375. [Crossref]

1868. Camila Gramkow, Annela Anger-Kraavi. 2018. Could fiscal policies induce green innovation in developing countries? The case of Brazilian manufacturing sectors. Climate Policy 18:2, 246-257. [Crossref]

1871. Qian Li, Qiužhi Xue, Yann Truong, Jie Xiong. 2018. MNCs’ industrial linkages and environmental spillovers in emerging economies: The case of China. International Journal of Production Economics 196, 346-355. [Crossref]

1878. Hyoung-Tae An, ###, ###, ###. 2018. What Determines the Corporate Response Level to Climate Change?. *The Journal of Business Education* **32**:1, 203-237. [Crossref]

1886. Fabio Montobbio, Ilaria Solito. 2018. Does the Eco-Management and Audit Scheme Foster Innovation in European Firms?. *Business Strategy and the Environment* **27**:1, 82-99. [Crossref]

1887. Marco Bettiol, Valentina De Marchi, Eleonora Di Maria. Social Entrepreneurship and Upgrading in Emerging Economies: The Indian Case of Industree and Its Brand Mother Earth 103-118. [Crossref]

1888. Jonathan Fisher. Environmental Regulation and Growth: Impact on Sustainable Economic Growth 49-89. [Crossref]

1889. Marina Resta, Elisabetta Arato. The Impact of Social Networks in Developing and Managing Chronic Care Models 191-208. [Crossref]

1890. Naz Onel, Beth Ann Fiedler. Green Business: Not Just the Color of Money 171-202. [Crossref]

1891. Özgür Arslan-Ayaydin, James Thewissen, Wouter Torsin. The Crowding-Out Effect of Green Energy Innovation 89-112. [Crossref]

1892. Florian Flachenecker, Raimund Bleischwitz, Jun Rentschler. The Introduction and Application of a Comprehensive Cost-Benefit Framework for Resource Efficiency Investments 87-106. [Crossref]
1893. Florian Flachenecker. The Effects of Resource Efficiency on Competitiveness and Climate Change Mitigation: The Role of Investments 139-168. [Crossref]

1894. Jens Horbach, Christiane Reif. New Developments in Eco-Innovation Research: Aim of the Book and Overview of the Different Chapters 1-11. [Crossref]

1895. Claudia Ghisetti. On the Economic Returns of Eco-Innovation: Where Do We Stand? 55-79. [Crossref]

1896. Andreas Ziegler. Disentangling Technological Innovations: A Micro-Econometric Analysis of their Determinants 123-146. [Crossref]

1897. Jens Horbach. The Impact of Resource Efficiency Measures on the Performance of Small and Medium-Sized Enterprises 147-162. [Crossref]

1898. Christiane Reif, Sascha Rexhäuser. Good Enough! Are Socially Responsible Companies the More Successful Environmental Innovators? 163-192. [Crossref]

1899. Hans-Jürgen August. CSR and Innovation: A Holistic Approach From a Business Perspective 29-73. [Crossref]

1900. Klaus Kotek, Alina M. Schoenberg, Christopher Schwand. CSR Behavior: Between Altruism and Profit Maximization 159-169. [Crossref]

1901. Tim Jans, Elvira Haezendonck. The Impact of Clusters on Firms' Environmental Strategies: Case Study of Antwerp's Chemical Cluster 103-137. [Crossref]

1902. Moritz Brand, Wolfgang Veit. Nachhaltigkeit und/oder Wettbewerbsfähigkeit? 425-444. [Crossref]

1903. Jeffrey Gauthier, Bill Wooldridge. Sustainability Ratings and Organizational Legitimacy: The Role of Compensating Tactics 141-157. [Crossref]

1904. Murat A. Yülek. Industrial Policy and Sustainable Development 3-26. [Crossref]

1905. Ashish Bharadwaj. Environment, Health, and New Technologies 23-30. [Crossref]

1906. Finn R. Førsund. Pollution Meets Efficiency: Multi-equation Modelling of Generation of Pollution and Related Efficiency Measures 37-79. [Crossref]

1907. Sirish Kumar Gouda, Ayon Chakraborty, M. S. Gajanand. Introduction: Sustainable Operations in India 1-7. [Crossref]

1908. Fandy Tjiptono. Examining the Challenges of Responsible Consumption in an Emerging Market 299-327. [Crossref]

1912. Philip Coish, Enda McGovern, Julie B. Zimmerman, Paul T. Anastas. The Value-Adding Connections Between the Management of Ecoinnovation and the Principles of Green Chemistry and Green Engineering 981-998. [Crossref]

1913. Sevil Acar, Ebru Voyvoda, Erinç Yeldan. Introduction 1-12. [Crossref]

1920. Robert N. Stavins. Environmental Economics 3782–3795. [Crossref]

1921. IURI TAVARES AMAZONAS, RODRIGO FREIRE DE CARVALHO E SILVA, MARISTELA OLIVEIRA DE ANDRADE. 2018. ENVIRONMENTAL MANAGEMENT IN HOTELS: SUSTAINABLE TECHNOLOGIES AND PRACTICES APPLIED IN HOTELS1. *Ambiente & Sociedade* **21**. [Crossref]

1931. Zhijun Feng, Wei Chen. 2018. Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model. *Sustainability* **10**:1, 223. [Crossref]

1932. Gurudas Nulkar. Environmental Sustainability Practices for SMEs 1-20. [Crossref]

1933. Chiara Caraiani, Camelia I. Lungu, Cornelia Dascălu, Florian Colceag. Models for Measuring and Reporting of Green Performance 204–229. [Crossref]

1934. Mark Anthony Camilleri. The Corporate Sustainability and Responsibility Proposition 1371–1385. [Crossref]

1938. Desalegn Sherkabu Abadama. The Role of Education in Attaining Sustainable Development in Sub-Saharan African Nations 114-129. [Crossref]

1939. Hasan Dinçer, Serhat Yuksel, Tuba Bozaykut-Bük. Evaluation of Financial and Economic Effects on Green Supply Chain Management With Multi-Criteria Decision-Making Approach 144-175. [Crossref]

1940. Anis Khayati. An Economic Analysis of the Evolution of the Tourism Sector in Bahrain 63-86. [Crossref]

1942. Arik Levinson. Pollution Haven Hypothesis 10449-10454. [Crossref]

1947. Roberto Sarmiento, Karla Ximena Vargas-Berrones. 2018. Modeling the implementation of green initiatives: An AHP-BOCR approach. *Cogent Engineering* **5**:1, 1432120. [Crossref]

1951. Alicia Fernanda Galindo Manrique. 2017. Efecto del desempeño ambiental sobre el riesgo de mercado en países emergentes: Caso de Brasil, Chile y México (Environmental performance and market risk in emerging countries: Brazil, Chile y México). *Revista Innovaciones de Negocios* **14**:28. . [Crossref]

1997. Xiaoyang Li, Yue M. Zhou. 2017. Offshoring Pollution while Offshoring Production?. *Strategic Management Journal* 38:11, 2310-2329. [Crossref]

1999. Jana HRONCOVÁ VICIANOVÁ, Jana JAĎUĎOVÁ, Silvia ROLÍKOVÁ. 2017. DEVELOPING ECO-INNOVATION IN BUSINESS PRACTICE IN SLOVAKIA. *Journal of Business Economics and Management* 18:5, 1042-1061. [Crossref]

2000. Bibliography 141-156. [Crossref]

2027. Gerrit Willem Ziggers. Policies and Strategies for Eco-Friendly Dairy Product 438–448. [Crossref]

2034. Andrea Mantovani, Ornella Tarola, Cecilia Vergari. 2017. End-of-pipe or cleaner production? How to go green in presence of income inequality and pro-environmental behavior. *Journal of Cleaner Production* 160, 71–82. [Crossref]

2036. Die Hu, Yuandi Wang, Jiashun Huang, Haiyan Huang. 2017. How do different innovation forms mediate the relationship between environmental regulation and performance?. *Journal of Cleaner Production* 161, 466–476. [Crossref]

2037. Derek D. Wang. 2017. Do United States manufacturing companies benefit from climate change mitigation technologies?. *Journal of Cleaner Production* 161, 821–830. [Crossref]

2038. Ling ling Guo, Ying Qu, Ming–Lang Tseng. 2017. The interaction effects of environmental regulation and technological innovation on regional green growth performance. *Journal of Cleaner Production* 162, 894–902. [Crossref]

2040. Chipo N. Ngongoni, Sara S Saartjie Grobbelaar. Value co-creation in entrepreneurial ecosystems: Learnings from a Norwegian perspective 707–713. [Crossref]

2041. Sandra Naomi Morioka, Marly Monteiro de Carvalho. 2017. Discutindo sustentabilidade no contexto de negócios e em relatórios de desempenho: análise de estudos de caso brasileiros. *Gestão & Produção* 24:3, 514–525. [Crossref]

2048. Davide La Torre, Danilo Liuzzi, Simone Marsiglio. 2017. Pollution Control Under Uncertainty and Sustainability Concern. *Environmental and Resource Economics* 67:4, 885-903. [Crossref]

2052. Walid Oueslati, Vera Zipperer, Damien Rousselière, Alexandros Dimitropoulos. 2017. Energy taxes, reforms and income inequality: An empirical cross-country analysis. *International Economics* 150, 80-95. [Crossref]

2053. Rémi Bazillier, Sophie Hatte, Julien Vauday. 2017. Are environmentally responsible firms less vulnerable when investing abroad? The role of reputation. *Journal of Comparative Economics* 45:3, 520-543. [Crossref]

2054. Rainer Quitzow, Joern Huenteler, Hanna Asmussen. 2017. Development trajectories in China’s wind and solar energy industries: How technology-related differences shape the dynamics of industry localization and catching up. *Journal of Cleaner Production* 158, 122-133. [Crossref]

2055. Spyros Arvanitis, Michael Peneder, Christian Rammer, Tobias Stucki, Martin Woerter. 2017. Development and utilization of energy-related technologies, economic performance and the role of policy instruments. *Journal of Cleaner Production* 159, 47-61. [Crossref]

2056. Hangyeol Seo, Yanghon Chung, Hyungseok (David) Yoon. 2017. R&D cooperation and unintended innovation performance: Role of appropriability regimes and sectoral characteristics. *Technovation* 66-67, 28-42. [Crossref]

2064. D. Rajagopal. 2017. A synthesis of unilateral approaches to mitigating emissions leakage under incomplete policies. *Climate Policy* 17:5, 573-590. [Crossref]

2066. Tilmann Rave, Frank Goetzke. 2017. Environmental innovation activities and patenting: Germany reconsidered. *Journal of Environmental Planning and Management* 60:7, 1214-1234. [Crossref]

2070. Valeria Costantini, Francesco Crespi, Giovanni Marin, Elena Paglialunga. 2017. Eco-innovation, sustainable supply chains and environmental performance in European industries 1 1We gratefully acknowledge the support by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 649186 – ISIGrowth. The comments and suggestions by three anonymous referees are also acknowledged. The usual disclaimers apply. *Journal of Cleaner Production* 155, 141-154. [Crossref]

2071. Deborah E. de Lange. 2017. Start-up sustainability: An insurmountable cost or a life-giving investment?. *Journal of Cleaner Production* 156, 838-854. [Crossref]

2074. Lizhong Tong, Shuxin Zhong, Xuemei Zhang. Evaluation on green development ability of Chinese automobile manufacturing enterprises 1-8. [Crossref]

2081. Li Zhou, Xi Tian, Zhengyi Zhou. 2017. The effects of environmental provisions in RTAs on PM2.5 air pollution. *Applied Economics* 49:27, 2630-2641. [Crossref]

2086. Bin Li, Shusheng Wu. 2017. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. *Journal of Cleaner Production* 153, 342-353. [Crossref]

2092. Lutao Ning, Xin Pan, Xuhong Xu. Corporate social responsibility, environmental product innovation and firm performance: Evidence from Chinese listed firms 350-359. [Crossref]

2094. Salman Haider, Aadil Ahmad Ganaie. 2017. Does energy efficiency enhance total factor productivity in case of India?. *OPEC Energy Review* 41:2, 153-163. [Crossref]

2097. Patricia Laurens, Christian Le Bas, Stéphane Lhuillery, Antoine Schoen. 2017. The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital. *Economics of Innovation and New Technology* 26:4, 311-333. [Crossref]

2105. Alessandro Muscio, Gianluca Nardone, Antonio Stasi. 2017. How does the search for knowledge drive firms’ eco-innovation? Evidence from the wine industry. *Industry and Innovation* 24:3, 298-320. [Crossref]

2111. Baolong Yuan, Shenggang Ren, Xiaohong Chen. 2017. Can environmental regulation promote the coordinated development of economy and environment in China’s manufacturing industry?—A panel data analysis of 28 sub-sectors. *Journal of Cleaner Production* 149, 11-24. [Crossref]

2135. Francisco José López-Arceiz, Ana José Bellostas Pérezgrueso, María Pilar Rivera Torres. 2017. Accessibility and transparency: impact on social economy. *Online Information Review* 41:1, 35-52. [Crossref]

2141. Rong-hui Xie, Yi-jun Yuan, Jing-jing Huang. 2017. Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China. *Ecological Economics* 132, 104-112. [Crossref]

2157. Ioannis E. Nikolaou, Anastasios Zervas. How Environmental Knowledge of Managers Plays a Critical Role in Implementing Green Supply Chain Management 17-33. [Crossref]

2158. Stefan Speck, Roberto Zoboli. The Green Economy in Europe: In Search for a Successful Transition 141-160. [Crossref]

2159. Sabina Silajdzic, Eldin Mehic. The Impact of Environmental Taxes on Competitive Performance of Pollution-Intensive Industries Among Transition Economies: Evidence from Panel Analysis 155-169. [Crossref]

2160. Ian Chaston. Macroenvironment 95-117. [Crossref]

2161. Akihiro Otsuka. Energy Efficiency and Productivity 41-63. [Crossref]

2162. Anastassios Gentzoglalis. Innovation and Regulatory Holdup: The Case of Shale Gas 411-432. [Crossref]

2163. Linda O’Riordan. The Rocky Road to Achieving Stakeholder Value in Business Strategy 417-478. [Crossref]

2164. Linda O’Riordan. Critical Review of the Research Contribution 327-376. [Crossref]

2165. Seyed Mostafa Razavi, Hamid Padash, Ali Nikoo Nesbati. The Role of Business Regulations in Economic Growth 41-53. [Crossref]

2166. Klaus Mathis. Sustainable Development, Economic Growth and Environmental Regulation 3-42. [Crossref]

2167. Éléonore Maitre-Ekern. The Choice of Regulatory Instruments for a Circular Economy 305-334. [Crossref]

2168. Shengjun Zhu, John Pickles, Canfei He. Going Green or Going Away: Environmental Regulation, Economic Geography and Firms’ Strategies in China’s Pollution-Intensive Industries 169-197. [Crossref]

2169. Suren Sista. Green Marketing in India: A Perspective 97-123. [Crossref]

2170. Murat A. Yülek. Industrial Policy and Sustainable Development 1-24. [Crossref]
2171. Patrick Habiyaremye, Dan Ayebale, Seperia B. Wanyama. Job-Rotation, Utilization of Workshops, and Performance of SMEs: An Empirical Study from the Gasabo District in Rwanda 187-204. [Crossref]

2175. Alberto Marzucchi, Sandro Montresor. 2017. Forms of knowledge and eco-innovation modes: Evidence from Spanish manufacturing firms. Ecological Economics 131, 208-221. [Crossref]

2177. Yanni Yu, Zhongfei Chen, Lijun Wei, Bing Wang. 2017. The low-carbon technology characteristics of China’s ferrous metal industry. Journal of Cleaner Production 140, 1739-1748. [Crossref]

2179. Cesare Antonio Fabio Riillo. 2017. Beyond the question “Does it pay to be green?”: How much green? and when?. Journal of Cleaner Production 141, 626-640. [Crossref]

2190. Harald Hinterecker, Michael Kopel. 2017. Supply Side Effects of Pollution Tax Rate Asymmetries. SSRN Electronic Journal. [Crossref]

2191. Fabio Moliterni. 2017. Sustainability-Oriented Business Model Innovation: Context and Drivers. SSRN Electronic Journal. [Crossref]

2192. Ana De Jesus, Sandro Mendonna. 2017. Lost in Transition? Drivers and Barriers in the Eco-Innovation Road to the Circular Economy. SSRN Electronic Journal. [Crossref]

2194. Helene Naegele, Aleksandar Zaklan. 2017. Does the EU ETS Cause Carbon Leakage in European Manufacturing?. SSRN Electronic Journal. [Crossref]

2196. Sarah Behnam, Raffaella Cagliano. 2017. Be Sustainable to Be Innovative: An Analysis of Their Mutual Reinforcement. Sustainability 9:1, 17. [Crossref]

2198. Zahid Irshad Younas, Christian Klein, Bernhard Zwergel. 2017. The effects of ownership concentration on sustainability: A case of listed firms from USA, UK and German. Corporate Ownership and Control 14:3, 113–121. [Crossref]

2199. Mark Anthony Camilleri. The Corporate Sustainability and Responsibility Proposition 1-16. [Crossref]

2200. Tutku Seckin-Celik. Sustainability Reporting and Sustainability in the Turkish Business Context 115-132. [Crossref]

2201. Selin Kucukkancabas Esen, Sahar Sobhy El Barky. Drivers and Barriers to Green Supply Chain Management Practices 232-260. [Crossref]

2203. Angel Peiro-Signes, Marival Segarra-Oña. Looking for Determinants of the Environmental Concern at the Hospitality Industry 173-181. [Crossref]

2205. Amandine Pinget, Rachel Bocquet. 2017. Spécificités des sources de connaissances pour l’innovation environnementale des PME. Management international 21:2, 95-108. [Crossref]

2206. Magdalena OLCZYK. 2016. BIBLIOMETRIC APPROACH TO TRACKING THE CONCEPT OF INTERNATIONAL COMPETITIVENESS. Journal of Business Economics and Management 17:6, 945-959. [Crossref]

2207. Pablo DEL RÍO, Javier CARRILLO-HERMOSILLA, Totti KÖNNÖLÄ, Mercedes BLEDA. 2016. RESOURCES, CAPABILITIES AND COMPETENCES FOR ECO-INNOVATION. Technological and Economic Development of Economy 22:2, 274-292. [Crossref]

2211. Wei Yan, Zhijian Cui, María José Álvarez Gil. 2016. Assessing the impact of environmental innovation in the airline industry: An empirical study of emerging market economies. *Environmental Innovation and Societal Transitions* 21, 80–94. [Crossref]

2212. Tsai Chi Kuo, I-Hsuan Hong, Sheng Chun Lin. 2016. Do carbon taxes work? Analysis of government policies and enterprise strategies in equilibrium. *Journal of Cleaner Production* 139, 337–346. [Crossref]

2214. Anna Mazzi, Sara Toniolo, Marco Mason, Filippo Aguiari, Antonio Scipioni. 2016. What are the benefits and difficulties in adopting an environmental management system? The opinion of Italian organizations. *Journal of Cleaner Production* 139, 873–885. [Crossref]

2215. Francisco J. Sáez-Martínez, Gilles Lefebvre, Juan J. Hernández, James H. Clark. 2016. Drivers of sustainable cleaner production and sustainable energy options. *Journal of Cleaner Production* 138, 1–7. [Crossref]

2216. Anass Cherrafi, Said Elfedazi, Andrea Chiarini, Ahmed Mokhllis, Khalid Benhida. 2016. The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. *Journal of Cleaner Production* 139, 828–846. [Crossref]

2217. Po–Han Chen, Chuan–Fang Ong, Shu–Chien Hsu. 2016. Understanding the relationships between environmental management practices and financial performances of multinational construction firms. *Journal of Cleaner Production* 139, 750–760. [Crossref]

2221. Maoliang Bu, Marcus Wagner. 2016. Racing to the bottom and racing to the top: The crucial role of firm characteristics in foreign direct investment choices. *Journal of International Business Studies* 47:9, 1032–1057. [Crossref]

2224. Carlo Brondi, Davide Collatina, Rosanna Fornasiero. Chapter eleven Sustainability assessments for mass customization supply chains 235–276. [Crossref]

2225. Anke Kutschke, Alexandra Rese, Daniel Baier. 2016. The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector. *Sustainability* 8:12, 1281. [Crossref]
2226. Baoshan Ge, Dake Jiang, Yang Gao, Sang-Bing Tsai. 2016. The Influence of Legitimacy on a Proactive Green Orientation and Green Performance: A Study Based on Transitional Economy Scenarios in China. *Sustainability* 8:12, 1344. [Crossref]

2227. Felipe Nogueira da CRUZ, Debora Nayar HOFF. ECOSSISTEMAS INDUSTRIAIS COMO ECO-INOVAÇÃO COERENTE COM A CONSTRUÇÃO DE UMA ECONOMIA VERDE 443-462. [Crossref]

2228. Márcia Souza AGUIAR. PERSPECTIVAS AMBIENTAIS 1090-1101. [Crossref]

2230. Tatjana TAMBOVCEVA. 2016. CLASSIFICATION OF FACTORS INFLUENCING ENVIRONMENTAL MANAGEMENT OF ENTERPRISE. *Technological and Economic Development of Economy* 22:6, 867-884. [Crossref]

2233. Malin Song, Guijun Zhang, Kuangnan Fang, Jing Zhang. 2016. Regional operational and environmental performance evaluation in China: non-radial DEA methodology under natural and managerial disposability. *Natural Hazards* 84:S1, 243-265. [Crossref]

2235. Leanne Chung, Carlos Wing-Hung Lo, Pansy Hon Ying Li. 2016. The interaction effects of institutional constraints on managerial intentions and sustainable performance. *International Journal of Production Economics* 181, 374-383. [Crossref]

2236. Raquel Antolín-López, Javier Delgado-Ceballos, Ivan Montiel. 2016. Deconstructing corporate sustainability: a comparison of different stakeholder metrics. *Journal of Cleaner Production* 136, 5-17. [Crossref]

2237. Zhongju Liao. 2016. Temporal cognition, environmental innovation, and the competitive advantage of enterprises. *Journal of Cleaner Production* 135, 1045-1053. [Crossref]

2241. Miao Ling Huang, Tsai Chi Kuo, Chiu Hsiang Joe Lin, Yu Yen Lo. 2016. Study of Environmental Performance of Taiwan’s Manufacturing Industry. *Applied Mechanics and Materials* 858, 359-365. [Crossref]

2243. . Bibliography 91-114. [Crossref]

2247. Grazia Cecere, Nicoletta Corrocher. 2016. Stringency of regulation and innovation in waste management: an empirical analysis on EU countries. *Industry and Innovation* **23**:7, 625–646. [Crossref]

2250. Joao Victor Rojas Luiz, Daniel Jugend, Charbel José Chiappeta Jabbour, Octaviano Rojas Luiz, Fernando Bernardi de Souza. 2016. Ecodesign field of research throughout the world: mapping the territory by using an evolutionary lens. *Scientometrics* **109**:1, 241-259. [Crossref]

2258. Riccardo Leoncini, Sandro Montresor, Francesco Rentocchini. 2016. CO2-reducing innovations and outsourcing: Evidence from photovoltaics and green construction in North-East Italy. *Research Policy* **45**:8, 1649-1659. [Crossref]

2259. Nicolò Barbieri. 2016. Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel. *Technological Forecasting and Social Change* **111**, 222-234. [Crossref]

2262. Pier Luigi Marchini, Luca Fornaciari. 2016. The increasing relevance of managing costs of poor quality (CoPQ). The case of the mineral water industry. *MANAGEMENT CONTROL* :3, 65–96. [Crossref]

2264. Romain Debref. 2016. Pour une approche systémique de l’innovation « environnementale ». Revue d’économie industrielle :155, 71-98. [Crossref]

2267. Rémi Schweizer, Johann Dupuis, Guillaume de Buren. 2016. Environmental innovation strategies: When and why NGOs go beyond public regulations. Environmental Politics 25:5, 899-920. [Crossref]

2271. Nahyun Kim, Jon J. Moon, Haitao Yin. 2016. Environmental Pressure and the Performance of Foreign Firms in an Emerging Economy. Journal of Business Ethics 137:3, 475-490. [Crossref]

2272. Eric Giraud-Héraud, Jean-Pierre Ponssard, Bernard Sinclair Desgagné, Louis-Georges Soler. 2016. The agro-food industry, public health, and environmental protection: investigating the Porter hypothesis in food regulation. Review of Agricultural, Food and Environmental Studies 97:2, 127-140. [Crossref]

2273. Guangtian Liu, Bing Wang, Ning Zhang. 2016. A coin has two sides: Which one is driving China’s green TFP growth?. Economic Systems 40:3, 481-498. [Crossref]

2274. Emily Galloway, Erik Paul Johnson. 2016. Teaching an old dog new tricks: Firm learning from environmental regulation. Energy Economics 59, 1-10. [Crossref]

2275. Yan Wang, Neng Shen. 2016. Environmental regulation and environmental productivity: The case of China. Renewable and Sustainable Energy Reviews 62, 758-766. [Crossref]

2276. Danijela Despotovic, Slobodan Cvetanovic, Vladimir Nedic, Milan Despotovic. 2016. Economic, social and environmental dimension of sustainable competitiveness of European countries. Journal of Environmental Planning and Management 59:9, 1656-1678. [Crossref]

2277. Francisco de Assis Costa, Danilo Araújo Fernandes. 2016. DINÂMICA AGRÁRIA, INSTITUIÇÕES E GOVERNANÇA TERRITORIAL PARA O DESENVOLVIMENTO SUSTENTÁVEL DA AMAZÔNIA. Revista de Economia Contemporânea 20:3, 517-518. [Crossref]

2278. Francisco Sáez-Martínez, Cristina Díaz-García, Ángela González-Moreno. 2016. Factors Promoting Environmental Responsibility in European SMEs: The Effect on Performance. Sustainability 8:9, 898. [Crossref]

2280. Ioannis Ioannou, Shelley Xin Li, George Serafeim. 2016. The Effect of Target Difficulty on Target Completion: The Case of Reducing Carbon Emissions. The Accounting Review 91:5, 1467-1492. [Crossref]

2282. Lucie K. Ozanne, Marcus Phipps, Todd Weaver, Michal Carrington, Michael Luchs, Jesse Catlin, Shipra Gupta, Nicholas Santos, Kristin Scott, Jerome Williams. 2016. Managing the Tensions at the Intersection of the Triple Bottom Line: A Paradox Theory Approach to Sustainability Management. Journal of Public Policy & Marketing 35:2, 249-261. [Crossref]

2283. Manabu Eto. Innovation created from differences in regulations: A case study of the electric-assist bicycle 1303-1313. [Crossref]

2284. Helen Song-Turner, Michael Polonsky. 2016. Enviropreneurial marketing in greening corporate activities. European Business Review 28:5, 506-531. [Crossref]

2285. Siri Jakobsen, Tommy Høyvarde Clausen. 2016. Innovating for a greener future: the direct and indirect effects of firms’ environmental objectives on the innovation process. Journal of Cleaner Production 128, 131-141. [Crossref]

2286. Rajat Panwar, Erlend Nybakk, Eric Hansen, Jonatan Pinkse. 2016. The effect of small firms’ competitive strategies on their community and environmental engagement. Journal of Cleaner Production 129, 578-585. [Crossref]

2289. Anne P.M. Velenturf, Paul D. Jensen. 2016. Promoting Industrial Symbiosis: Using the Concept of Proximity to Explore Social Network Development. Journal of Industrial Ecology 20:4, 700-709. [Crossref]

2290. Teodora Diana Corsatea. 2016. Localised knowledge, local policies and regional innovation activity for renewable energy technologies: Evidence from Italy. Papers in Regional Science 95:3, 443-466. [Crossref]

2291. Kathrin Hasler, Hans-Werner Olfs, Onno Omta, Stefanie Bröring. 2016. Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain. Sustainability 8:8, 682. [Crossref]

2293. Françoise Quairel-Lanoizelee. 2016. Are competition and corporate social responsibility compatible?. Society and Business Review 11:2, 130-154. [Crossref]

2294. Sunghee Lee, Heungjun Jung. 2016. The effects of corporate social responsibility on profitability. Management Decision 54:6, 1383-1406. [Crossref]

2296. Jakob Kapeller, Bernhard Schütz, Dennis Tamesberger. 2016. From free to civilized trade: a European perspective. Review of Social Economy 74:3, 320-328. [Crossref]

2301. Fabrizio Baldassarre, Raffaele Campo. 2016. Sustainability as a marketing tool: To be or to appear to be?. *Business Horizons* 59:4, 421-429. [Crossref]

2302. Edurne A. Iñigo, Laura Albareda. 2016. Understanding sustainable innovation as a complex adaptive system: a systemic approach to the firm. *Journal of Cleaner Production* 126, 1-20. [Crossref]

2303. Kumar Verma Bhupendra, Shirish Sangle. 2016. Strategy to derive benefits of radical cleaner production, products and technologies: a study of Indian firms. *Journal of Cleaner Production* 126, 236-247. [Crossref]

2304. Simone Franceschini, Lourenço G.D. Faria, Roman Jurowetzki. 2016. Unveiling scientific communities about sustainability and innovation. A bibliometric journey around sustainable terms. *Journal of Cleaner Production* 127, 72-83. [Crossref]

2309. Sofia Lundberg, Per-Olov Marklund, Elon Strömback. 2016. Is Environmental Policy by Public Procurement Effective?. *Public Finance Review* 44:4, 478-499. [Crossref]

2311. Jeong Soo Park, Yoon Sung Kim, Byung Chan Chae. 2016. An exploratory research on moderate effect of cost leadership and quality leadership strategy to relationship between environmental management practices and performances. *Journal of the Korean society for quality management* 44:2, 309-320. [Crossref]

2317. Davide Consoli, Giovanni Marin, Alberto Marzucchi, Francesco Vona. 2016. Do green jobs differ from non-green jobs in terms of skills and human capital?. *Research Policy* 45:5, 1046-1060. [Crossref]

2322. Thomas P. Lyon, John W. Maxwell. Self-Regulation and Regulatory Discretion: Why Firms May Be Reluctant to Signal Green 301-329. [Crossref]

2323. Toshiyuki Sueyoshi, Yan Yuan. 2016. Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations. *Energy Economics* 56, 270-287. [Crossref]

2324. Toshiyuki Sueyoshi, Yan Yuan. 2016. Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for social sustainability in China. *Energy Economics* 56, 288-309. [Crossref]

2325. Francesco Nicolli, Francesco Vona. 2016. Heterogeneous policies, heterogeneous technologies: The case of renewable energy. *Energy Economics* 56, 190-204. [Crossref]

2329. György Csomós, Géza Tóth. 2016. Exploring the position of cities in global corporate research and development: A bibliometric analysis by two different geographical approaches. *Journal of Informetrics* 10:2, 516-532. [Crossref]

2330. Ting Levy, Elias Dinopoulos. 2016. Global environmental standards with heterogeneous polluters. *International Review of Economics & Finance* 43, 482-498. [Crossref]

2345. Wei Wang, Hualin Xie, Tong Jiang, Daobei Zhang, Xue Xie. 2016. Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index. *Sustainability* 8:4, 336. [Crossref]

2349. Andreas Klein, Parimal Bhagat. 2016. Comparative study of technological innovativeness between individuals in the USA and India. *Review of International Business and Strategy* 26:1, 100-117. [Crossref]

2352. Meryem Saygili. 2016. Pollution abatement costs and productivity: does the type of cost matter?. *Letters in Spatial and Resource Sciences* 9:1, 1-7. [Crossref]

2353. Michael Kolloch, Oliver Golker. 2016. Staatliche Regulierung und Digitalisierung als Antezedenzien für Innovationen in der Energiewirtschaft am Beispiel von REMIT. *Zeitschrift für Energiewirtschaft* 40:1, 41-54. [Crossref]

2355. Toshiyuki Sueyoshi, Mika Goto. 2016. Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment. *Energy Economics* 55, 173-188. [Crossref]

2358. Mirela Aceleanu. 2016. Sustainability and Competitiveness of Romanian Farms through Organic Agriculture. *Sustainability* 8:3, 245. [Crossref]

2359. John Lyneis, John Sterman. 2016. How to Save a Leaky Ship: Capability Traps and the Failure of Win-Win Investments in Sustainability and Social Responsibility. *Academy of Management Discoveries* 2:1, 7-32. [Crossref]

2361. Gregor Schwerhoff. 2016. The economics of leadership in climate change mitigation. *Climate Policy* 16:2, 196-214. [Crossref]

2362. John Ferguson, Thereza Raquel Sales de Aguiar, Anne Fearfull. 2016. Corporate response to climate change: language, power and symbolic construction. *Accounting, Auditing & Accountability Journal* 29:2, 278-304. [Crossref]

2369. Linlin Zhao, Yong Zha, Nannan Liang, Liang Liang. 2016. Data envelopment analysis for unified efficiency evaluation: an assessment of regional industries in China. *Journal of Cleaner Production* 113, 695-704. [Crossref]

2375. ALEXANDRA RESE, ANKE KUTSCHKE, DANIEL BAIER. 2016. ANALYZING THE RELATIVE INFLUENCE OF SUPPLY SIDE, DEMAND SIDE AND REGULATORY FACTORS ON THE SUCCESS OF COLLABORATIVE ENERGY INNOVATION PROJECTS. *International Journal of Innovation Management* 20:02, 1650029. [Crossref]

2376. Giuseppe Ioppolo, Stefano Cucurachi, Roberta Salomone, Giuseppe Saija, Lei Shi. 2016. Sustainable Local Development and Environmental Governance: A Strategic Planning Experience. *Sustainability* 8:2, 180. [Crossref]

2381. Andreas Duit, Peter H. Feindt, James Meadowcroft. 2016. Greening Leviathan: the rise of the environmental state?. *Environmental Politics* 25:1, 1-23. [Crossref]

2406. Tiago T.S. Siqueira, Michel Duru. 2016. Economics and environmental performance issues of a typical Amazonian beef farm: a case study. *Journal of Cleaner Production* **112**, 2485-2494. [Crossref]

2407. Xiao-xing Huang, Zhen-peng Hu, Cun-shan Liu, Da-jin Yu, Liu-fang Yu. 2016. The relationships between regulatory and customer pressure, green organizational responses, and green innovation performance. *Journal of Cleaner Production* **112**, 3423-3433. [Crossref]

2408. Ki-Hoon Lee, Stephan Vachon. Integrated Supply Network and Business Sustainability 59-93. [Crossref]

2410. Britta Klagge, Sebastian Reimer. Carbon Offsetting and Corporate Strategies: The Case of Large German Firms 175-197. [Crossref]

2411. Elisa Cavezzali, Nazim Hussain, Ugo Rigoni. The Integrated Reporting and the Conference Calls Content 231-252. [Crossref]

2412. Malorzata Oonowska, Dominique Torre. Toward a Sustainable Tourism 195-213. [Crossref]

2413. Dennis J. Aigner. Corporate Social Responsibility and Financial Performance 11-37. [Crossref]

2419. Rafael Morales-Lage, Aurelia Bengochea Morancho. 2016. Does Environmental Policy Stringency Foster Innovation and Productivity in OECD Countries?. *SSRN Electronic Journal*. [Crossref]

2429. Wang Yun, Yanxi Li, Zhuang Ma, Jinbo Song. 2016. The Deterrence Effect of the Environmental Regulation: The Influence of the Penalized Firms on Peer Firms’ Environmental Investment Decision. *SSRN Electronic Journal*. [Crossref]

2433. Eskandar Elmarzougui, Bruno Larue, Lota D. Tamini. 2016. Trade Openness, Domestic and Foreign Investments, and the Environment. *Modern Economy* 07:05, 591-605. [Crossref]

2434. Patricia Crifo, Antoine Rebérioux. 2016. Corporate governance and corporate social responsibility: A typology of OECD countries. *Journal of Governance and Regulation* 5:2, 14-27. [Crossref]

2435. Diane-Laure Arjaliès, Cécile Goubet, Jean-Pierre Ponsuard. Strategic Approaches to CO2 Emissions. 583-604. [Crossref]

2436. G. P. Sahu, Monika Singh. Green Information System Adoption and Sustainability: A Case Study of Select Indian Banks 292-304. [Crossref]

2441. Shu-Chen Chang. 2015. Threshold effect of foreign direct investment on environmental degradation. *Portuguese Economic Journal* 14:1-3, 75-102. [Crossref]

2443. Gabriela Michalek, Reimund Schwarze. 2015. Carbon leakage: pollution, trade or politics?. *Environment, Development and Sustainability* 17:6, 1471-1492. [Crossref]

2444. Tommy Lundgren, Per-Olov Marklund. 2015. Climate policy, environmental performance, and profits. *Journal of Productivity Analysis* 44:3, 225-235. [Crossref]

2445. Chong Hui Ling, Khalid Ahmed, Rusnah Binti Muhamad, Muhammad Shahbaz. 2015. Decomposing the trade–environment nexus for Malaysia: what do the technique, scale, composition, and comparative advantage effect indicate?. *Environmental Science and Pollution Research* 22:24, 20131-20142. [Crossref]
2446. María-del-Val Segarra-Oña, Angel Peiró-Signes, Roberto Cervelló-Royo. 2015. A Framework to Move Forward on the Path to Eco-innovation in the Construction Industry: Implications to Improve Firms' Sustainable Orientation. *Science and Engineering Ethics* **21**:6, 1469-1484. [Crossref]

2453. Yasser Al-Saleh, Sami Mahroum. 2015. A critical review of the interplay between policy instruments and business models: greening the built environment a case in point. *Journal of Cleaner Production* **109**, 260-270. [Crossref]

2455. J. Korhonen, S. Pätäri, A. Toppinen, A. Tuppura. 2015. The role of environmental regulation in the future competitiveness of the pulp and paper industry: the case of the sulfur emissions directive in Northern Europe. *Journal of Cleaner Production* **108**, 864-872. [Crossref]

2456. Lara Johannsdottir. 2015. Drives of proactive environmental actions of small, medium and large Nordic non-life insurance companies – and insurers as a driving force of actions. *Journal of Cleaner Production* **108**, 685-698. [Crossref]

2460. Jang–Hwan Jo, Tae Roh, Seonghoon Kim, Yeo-Chang Youn, Mi Park, Ki Han, Eun Jang. 2015. Eco-Innovation for Sustainability: Evidence from 49 Countries in Asia and Europe. *Sustainability* **7**:12, 16820–16835. [Crossref]

2464. Maria Razumova, Javier Lozano Ibáñez, Javier Rey-Maquieira Palmer. 2015. Drivers of environmental innovation in Majorcan hotels. Journal of Sustainable Tourism 23:10, 1529-1549. [Crossref]

2466. Laurent Franckx. 2015. Regulatory Emission Limits for Cars and the Porter Hypothesis: A Survey of the Literature. Transport Reviews 35:6, 749-766. [Crossref]

2467. Massimiliano Mazzanti, Giovanni Marin, Susanna Mancinelli, Francesco Nicolli. 2015. Carbon dioxide reducing environmental innovations, sector upstream/downstream integration and policy: evidence from the EU. Empirica 42:4, 709-735. [Crossref]

2468. Seyyed Ali Delbari, Siew Imm Ng, Yuhanis Abdul Aziz, Jo Ann Ho. 2015. Measuring the influence and impact of competitiveness research: a Web of Science approach. Scientometrics 105:2, 773-788. [Crossref]

2469. Suphi Sen. 2015. Corporate governance, environmental regulations, and technological change. European Economic Review 80, 36-61. [Crossref]

2470. Víctor Luis Vázquez, Gloria Rodriguez, Tiberio Daddi, Maria Rosa De Giacomo, Caroline Polders, Evelien Dils. 2015. Policy challenges in transferring the integrated pollution Prevention and control approach to Southern Mediterranean countries: a case study. Journal of Cleaner Production 107, 486-497. [Crossref]

2473. Kexin Bi, Ping Huang, Hui Ye. 2015. Risk identification, evaluation and response of low-carbon technological innovation under the global value chain: A case of the Chinese manufacturing industry. Technological Forecasting and Social Change 100, 238-248. [Crossref]

2475. Bingying Dong, Ling Zhu, Kevin Li, Meifeng Luo. 2015. Acceptance of the international compensation regime for tanker oil pollution – And its implications for China. Marine Policy 61, 179-186. [Crossref]

2476. Les E. Lanyon. Phosphorus, Animal Nutrition, and Feeding: Overview 559-586. [Crossref]

2478. Karl Aiginger, Johanna Vogel. 2015. Competitiveness: from a misleading concept to a strategy supporting Beyond GDP goals. Competitiveness Review 25:5, 497-523. [Crossref]

Claudia Ghisetti, Federico Pontoni. 2015. Investigating policy and R&D effects on environmental innovation: A meta-analysis. *Ecological Economics* 118, 57-66. [Crossref]

Z.Eylem Gevrek, Ayse Uyduranoglu. 2015. Public preferences for carbon tax attributes. *Ecological Economics* 118, 186-197. [Crossref]

Ángeles Pereira Santos, Xavier Vence. 2015. Environmental Policy Instruments and Eco-innovation: An Overview of Recent Studies. *Innovar* 25:58, 65-80. [Crossref]

Tetsuya Tsurumi, Shunsuke Managi, Akira Hibiki. 2015. Do Environmental Regulations Increase Bilateral Trade Flows?. *The B.E. Journal of Economic Analysis & Policy* 15:4, 1549-1577. [Crossref]

Nicolò Barbieri. 2015. Investigating the impacts of technological position and European environmental regulation on green automotive patent activity. *Ecological Economics* 117, 140-152. [Crossref]

Frank W. Geels, Andy McMeekin, Josephine Mylan, Dale Southerton. 2015. A critical appraisal of Sustainable Consumption and Production research: The reformist, revolutionary and reconfiguration positions. *Global Environmental Change* 34, 1-12. [Crossref]

Kevin Gatt, Celine Schranz. 2015. Retrofitting a 3 star hotel as a basis for piloting water minimisation interventions in the hospitality sector. *International Journal of Hospitality Management* 50, 115-121. [Crossref]

Ki–Hoon Lee, Byung Min, Keun–Hyo Yook. 2015. The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance. *International Journal of Production Economics* 167, 1-11. [Crossref]

Tobias Møller Ruby. 2015. Innovation-enabling policy and regime transformation towards increased energy efficiency: the case of the circulator pump industry in Europe. *Journal of Cleaner Production* 103, 574-585. [Crossref]

Eun Jang, Mi Park, Tae Roh, Ki Han. 2015. Policy Instruments for Eco-Innovation in Asian Countries. *Sustainability* 7:9, 12586-12614. [Crossref]

Michael Grubb, Jean–Charles Hourcade, Karsten Neuhoff. 2015. The Three Domains structure of energy-climate transitions. *Technological Forecasting and Social Change* 98, 290-302. [Crossref]
2499. René Bohnsack, Ans Kolk, Jonatan Pinkse. 2015. Catching recurring waves: Low-emission vehicles, international policy developments and firm innovation strategies. *Technological Forecasting and Social Change* 98, 71-87. [Crossref]

2501. Muhammad Shahbaz, Samia Nasreen, Faisal Abbas, Omri Anis. 2015. Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?. *Energy Economics* 51, 275-287. [Crossref]

2502. Toshiyuki Sueyoshi, Mika Goto. 2015. DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies. *Energy Economics* 51, 329-345. [Crossref]

2504. Huw Davies, Paul Nieuwenhuis. Regulating the Car 163-175. [Crossref]

2506. Lorena M. D’Agostino. 2015. How MNEs respond to environmental regulation: integrating the Porter hypothesis and the pollution haven hypothesis. *Economia Politica* 32:2, 245-269. [Crossref]

2509. ###, Sung-Chul Nor. 2015. Triangular Relationships in the Internationalized Market: the Mediating Role in Functional Labor Flexibility. ##### 13:3, 91-111. [Crossref]

2514. Giovanni Marin, Alberto Marzucchi, Roberto Zoboli. 2015. SMEs and barriers to Eco-innovation in the EU: exploring different firm profiles. *Journal of Evolutionary Economics* 25:3, 671-705. [Crossref]

2515. Xiaoli Zhao, Haitao Yin, Yue Zhao. 2015. Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China. *Applied Energy* 149, 238-247. [Crossref]

2516. Kasper Dirckinck-Holmfeld. 2015. The options of local authorities for addressing climate change and energy efficiency through environmental regulation of companies. *Journal of Cleaner Production* 98, 175-184. [Crossref]

2517. Rosario Domingo, Sergio Aguado. 2015. Overall Environmental Equipment Effectiveness as a Metric of a Lean and Green Manufacturing System. *Sustainability* 7:7, 9031-9047. [Crossref]

2542. Hanna Schramm-Klein, Dirk Morschett, Bernhard Swoboda. 2015. Retailer corporate social responsibility. *International Journal of Retail & Distribution Management* **43**:4/5, 403-431. [Crossref]

2545. Muhammad Shahbaz, Hrushikesh Mallick, Mantu Kumar Mahalik, Nanthakumar Loganathan. 2015. Does globalization impede environmental quality in India?. *Ecological Indicators* **52**, 379-393. [Crossref]

2546. Pablo Rodrigo, Pablo Muñoz, Alexander Wright. 2015. Transitions dynamics in context: key factors and alternative paths in the sustainable development of nations. *Journal of Cleaner Production* **94**, 221-234. [Crossref]

2554. Brigitte Hoogendoorn, Daniela Guerra, Peter van der Zwan. 2015. What drives environmental practices of SMEs?. *Small Business Economics* **44**:4, 759-781. [Crossref]

2571. Praveen Goyal, Zillur Rahman, Absar Ahmad Kazmi. 2015. Identification and prioritization of corporate sustainability practices using analytical hierarchy process. *Journal of Modelling in Management* **10**:1, 23–49. [Crossref]

2573. Aziz Bouzaher, Sebnem Sahin, Erinç Yeldan. 2015. HOW TO GO GREEN: a general equilibrium investigation of environmental policies for sustained growth with an application to Turkey’s economy. *Letters in Spatial and Resource Sciences* **8**:1, 49–76. [Crossref]

2579. Patricia Calicchio Berardi, Renata Peregrino de Brito. 2015. Drivers of environmental management in the Brazilian context. *BAR - Brazilian Administration Review* **12**:1, 109–128. [Crossref]

2593. Andreas Ziegler. 2015. Disentangling technological innovations: a micro-econometric analysis of their determinants. *Journal of Environmental Planning and Management* **58**:2, 315-335. [Crossref]

2595. Patricia Crifo, Vanina D. Forget. 2015. THE ECONOMICS OF CORPORATE SOCIAL RESPONSIBILITY: A FIRM-LEVEL PERSPECTIVE SURVEY. *Journal of Economic Surveys* **29**:1, 112-130. [Crossref]

2596. Marie Ferru, Nicolas Liberat, Benjamin Guimond, Marc-Hubert Depret. 2015. Deconstructing the collective process of environmental innovation: a case study of Poitou-Charentes companies. *Journal of Innovation Economics & Management* **16**:1, 139-170. [Crossref]

2597. Mei-Fang Chen, Chia-Lin Lee. 2015. The impacts of green claims on coffee consumers’ purchase intention. *British Food Journal* **117**:1, 195-209. [Crossref]

2598. María-del-Val Segarra-Oña, José Mondéjar-Jiménez, Ángel Peiró-Signes, Juan-Antonio Mondéjar-Jiménez. 2015. Heterogeneous behavioral patterns influencing the proactive environmental orientation of firms: How does your company look?. *Innovation* **17**:1, 69-80. [Crossref]

2600. Ioannis E. Nikolaou, Clairia Loizou. 2015. The Green Public Procurement in the midst of the economic crisis: is it a suitable policy tool?. *Journal of Integrative Environmental Sciences* **12**:1, 49-66. [Crossref]

2602. Shu-Chen Chang, Wan-Tran Huang. The Effects of Foreign Direct Investment and Economic Development on Carbon Dioxide Emissions 483-496. [Crossref]

2603. Özgür Arslan-Ayaydin, James Thewissen. The Impact of Environmental Strengths and Concerns on the Accounting Performance of Firms in the Energy Sector 83-107. [Crossref]

2604. Andrea Brasco Pampanelli, Pauline Found, Andréa Moura Bernardes. Sustainable Manufacturing: The Lean and Green Business Model 131-161. [Crossref]
2623. Luca Lambertini, Giuseppe Pignataro, Alessandro Tampieri. 2015. Competition Among Coalitions in a Cournot Industry: A Validation of the Porter Hypothesis. SSRN Electronic Journal. [Crossref]

2624. Mozaffar Khan, George Serafeim, Aaron Yoon. 2015. Corporate Sustainability: First Evidence on Materiality. SSRN Electronic Journal. [Crossref]

2626. S. Serban Scrieciu. 2015. Measuring Environmental Action and Economic Performance in Developing Countries. SSRN Electronic Journal. [Crossref]

2628. Jian Zhang, Dongmin Kong, Ji (George) Wu. 2015. Being Good by Hiring Directors with Foreign Experiences. SSRN Electronic Journal. [Crossref]

2629. Peter Howitt. 2015. Mushrooms and Yeast: The Implications of Technological Progress for Canada’s Economic Growth. SSRN Electronic Journal. [Crossref]

2633. Philip E. Graves. 2015. Implications of Global Warming: Two Eras. SSRN Electronic Journal. [Crossref]

2634. Karl Aiginger, Matthias Firgo. 2015. Regional Competitiveness Under New Perspectives. SSRN Electronic Journal. [Crossref]

2637. Jian Zhang, Dongmin Kong, Ji (George) Wu. 2015. Doing Good Business by Hiring Directors with Foreign Experience. SSRN Electronic Journal. [Crossref]

2638. Carlo Reggiani, Francesco Silvestri. 2015. Municipal Waste Collection: Market Competition and the EU Policy. SSRN Electronic Journal. [Crossref]

2639. John Lewis. 2015. Green Consumers or Green Wild Goose Chase: Market Demand As a Determinant of Eco-Innovation in the Purchase of Refrigerators. SSRN Electronic Journal. [Crossref]

2640. Ivana Stojchevska, Agon Baftijari. 2015. The Impact of Governmental Policy on R&D Projects in the Pharmaceutical Industry. SSRN Electronic Journal. [Crossref]

2641. Ammar Rashid, William Yu Chung Wang, Felix B Tan. Value Co-Creation in Cloud Services 98–115. [Crossref]

2642. Francesco Di Maio, Peter Carlo Rem. 2015. A Robust Indicator for Promoting Circular Economy through Recycling. Journal of Environmental Protection 06:10, 1095–1104. [Crossref]

2643. Amandine Pinget, Rachel Bocquet, Caroline Mothe. 2015. Barriers to Environmental Innovation in SMEs: Empirical Evidence from French Firms. M@n@gement 18:2, 132. [Crossref]
2644. Yudi Fernando, Muhammad Shabir Shaharudin, Wah Wen Xin. Eco-Innovation Enablers and Typology in Green Furniture Manufacturing 416-431. [Crossref]

2648. Heike Doering, Claire Evans, Dean Stroud. 2015. Sustainable Varieties of Capitalism? The Greening of Steel Work in Brazil and Germany. *Relations industrielles* **70**:4, 621-644. [Crossref]

2654. Andrea Brasco Pampanelli, Pauline Found, Andrea Moura Bernardes. 2014. A Lean & Green Model for a production cell. *Journal of Cleaner Production* **85**, 19-30. [Crossref]

2656. Jerad A. Ford, John Steen, Martie-Louise Verreynne. 2014. How environmental regulations affect innovation in the Australian oil and gas industry: going beyond the Porter Hypothesis. *Journal of Cleaner Production* **84**, 204-213. [Crossref]

2657. Andrea Appolloni, Hui Sun, Fu Jia, Xiaomei Li. 2014. Green Procurement in the private sector: a state of the art review between 1996 and 2013. *Journal of Cleaner Production* **85**, 122-133. [Crossref]

2665. Caroline Orset. 2014. Innovation and the precautionary principle. *Economics of Innovation and New Technology* 23:8, 780-801. [Crossref]

2666. Sanfeng Zhang, Maoliang Bu, Huafan Yang. Environmental Regulation and Firm Productivity in China 129-152. [Crossref]

2667. Maoliang Bu, Zhibiao Liu, Marcus Wagnier, Xiaohua Yu. Corporate Social Responsibility and the Pollution Haven Hypothesis: Evidence from Multinational’s Investment Decision in China 109-127. [Crossref]

2670. Justin Doran, Geraldine Ryan. 2014. Eco-Innovation – does additional engagement lead to additional rewards?. *International Journal of Social Economics* 41:11, 1110-1130. [Crossref]

2675. Maethee Mekaroonreung, Andrew L. Johnson. 2014. A nonparametric method to estimate a technical change effect on marginal abatement costs of U.S. coal power plants. *Energy Economics* 46, 45-55. [Crossref]

2679. Ana Beatriz Jabbour, Charbel Jabbour, Kannan Govindan, Devika Kannan, Ariana Fernandes Arantes. 2014. Mixed methodology to analyze the relationship between maturity of environmental management
and the adoption of green supply chain management in Brazil. Resources, Conservation and Recycling 92, 255-267. [Crossref]

2681. The Dilemma of Sustainability and Corporate Social Responsibility 22-60. [Crossref]

2682. Martin Stuebs, Li Sun. Corporate Governance and Environmental Activity 81-113. [Crossref]

2683. Franck Aggeri, Christophe Abrassarts. Chapitre 17. Le management de l’éco-conception 249-269. [Crossref]

2687. Christoph Graf, Franz Wirl. 2014. Corporate social responsibility: a strategic and profitable response to entry?. Journal of Business Economics 84:7, 917-927. [Crossref]

2692. Javad Sadeghzadeh. 2014. The impact of environmental policies on productivity and market competition. Environment and Development Economics 19:5, 548-565. [Crossref]

2693. Itziar Lujan-Blanco, Jordi Fortuny-Santos. Students' research on lean and green 1-8. [Crossref]

2694. Xuan Li. 2014. A Brief Analysis of the Application of Green Textiles in Children’s Space Environment Design. Advanced Materials Research 1048, 354-357. [Crossref]

2696. Fabien Martinez. 2014. Corporate strategy and the environment: towards a four-dimensional compatibility model for fostering green management decisions. Corporate Governance: The international journal of business in society 14:5, 607-636. [Crossref]

2697. Marcelo Biagio Laquimia, Gabriel Eweje. Collaborative Governance toward Sustainability: A Global Challenge on Brazil Perspective 371-413. [Crossref]

2698. Torill Meistad. 2014. How energy efficient office buildings challenge and contribute to usability. Smart and Sustainable Built Environment 3:2, 110-131. [Crossref]

2701. Hardeep Chahal, Ramesh Dangwal, Swati Raina. 2014. Conceptualisation, development and validation of green marketing orientation (GMO) of SMEs in India. *Journal of Global Responsibility* 5:2, 312-337. [Crossref]

2705. Suvi Huttunen, Paula Kivimaa, Venla Virkamäki. 2014. The need for policy coherence to trigger a transition to biogas production. *Environmental Innovation and Societal Transitions* 12, 14-30. [Crossref]

2707. Toshiyuki Sueyoshi, Derek Wang. 2014. Radial and non-radial approaches for environmental assessment by Data Envelopment Analysis: Corporate sustainability and effective investment for technology innovation. *Energy Economics* 45, 537-551. [Crossref]

2711. Chien-Lung Hsu, Yi-Chuan Liao. Sustainability strategies and reverse logistics management: A contingent link 500-507. [Crossref]

2712. ###, ###. 2014. The Effects of Sustainable Management on the Regional Development and the Win-Win Growth between Corporation and Region. *Journal of Local Government Studies* 26:3, 101-126. [Crossref]

2713. Maria De Giacomo, Arianna Loprieno, Mario Tarantini, Rovena Preka, Maria Litido, Anne Furphy, Victor Calvo, Pere Llorach-Massana, Carles Gasol, Joan Rieradevall, Ramon Farreny, Xavier Gabarrell. 2014. Eco-innovative Practices for Sustainable Consumption and Production: What are the Possible Benefits for Companies?. *Administrative Sciences* 4:3, 242-275. [Crossref]

2719. Shengjun Zhu, Canfei He, Ying Liu. 2014. Going green or going away: Environmental regulation, economic geography and firms’ strategies in China’s pollution-intensive industries. *Geoforum* 55, 53-65. [Crossref]

2722. Jian-zhong Xu, Xiao-yu Qu. Evaluation of environmental technology innovation capacity of equipment manufacturing industry based on optimal combination weights 1677-1685. [Crossref]

2725. Maria Pettersson, Patrik Söderholm. 2014. Industrial Pollution Control and Efficient Licensing Processes: The Case of Swedish Regulatory Design. *Sustainability* 6:8, 5401-5422. [Crossref]

2728. Laure Latruffe, Laurent Piet. 2014. Does land fragmentation affect farm performance? A case study from Brittany, France. *Agricultural Systems* 129, 68-80. [Crossref]

2729. Marianna Gilli, Susanna Mancinelli, Massimiliano Mazzanti. 2014. Innovation complementarity and environmental productivity effects: Reality or delusion? Evidence from the EU. *Ecological Economics* 103, 56-67. [Crossref]

2730. Seda Meyveci Doganay, Selin Sayek, Fatma Taskin. 2014. Is environmental efficiency trade inducing or trade hindering?. *Energy Economics* 44, 340-349. [Crossref]

2732. Pekka Murto, Oscar Person, Markus Ahola. 2014. Shaping the face of environmentally sustainable products: image boards and early consumer involvement in ship interior design. *Journal of Cleaner Production* 75, 86-95. [Crossref]

2733. Claudia Ghisetti, Klaus Rennings. 2014. Environmental innovations and profitability: how does it pay to be green? An empirical analysis on the German innovation survey. *Journal of Cleaner Production* 75, 106-117. [Crossref]

2734. Joel Rodrigue, Omolola Soumonni. 2014. Deforestation, foreign demand and export dynamics in Indonesia. *Journal of International Economics* 93:2, 316-338. [Crossref]

2737. Pauline Deutz. 2014. A Class-Based Analysis of Sustainable Development: Developing a Radical Perspective on Environmental Justice. *Sustainable Development* **22**:4, 243-252. [Crossref]

2739. Pablo Rodrigo, Daniel Arenas. 2014. La nueva gobernanza política y las colaboraciones intersectoriales para el desarrollo sostenible. *Innovar* **24**:53, 197-210. [Crossref]

2741. Sang M. Lee, Yonghiw Noh, Donghyun Choi, Jin Sung Rha. 2014. The effect of ISO 14001 on equity structure. *Industrial Management & Data Systems* **114**:6, 979-991. [Crossref]

2745. Carlo Brondi, Federico Fragassi, Tommaso Pasetti, Rosanna Fornasier. Evaluating sustainability trade-offs along supply chain 1-8. [Crossref]

2747. Ivan Montiel, Javier Delgado-Ceballos. 2014. Defining and Measuring Corporate Sustainability. *Organization & Environment* **27**:2, 113-139. [Crossref]

2748. Wendy L. Tate, Lisa M. Ellram, Kevin J. Dooley. 2014. The impact of transaction costs and institutional pressure on supplier environmental practices. *International Journal of Physical Distribution & Logistics Management* **44**:5, 353-372. [Crossref]

2755. Pawel Tomasz Witkowski. The impact of EU ETS on the value of power plantscost pass-through rate, cost of capital 1-5. [Crossref]

2756. Edward Curry, Brian Donnellan. 2014. Implementing Sustainable IT Strategy: The Case of Intel. *Journal of Information Technology Teaching Cases* 4:1, 41-48. [Crossref]

2762. Ioannis E. Nikolaou, George Kourouklaris, Thomas A. Tsalis. 2014. A framework to assist the financial community in incorporating water risks into their investment decisions. *Journal of Sustainable Finance & Investment* **4**:2, 93-109. [Crossref]

2765. Hamish van der Ven. 2014. Socializing the C-suite: why some big-box retailers are “greener” than others. *Business and Politics* **16**:1, 31-63. [Crossref]

2767. Glenn Fieldman. 2014. Financialisation and ecological modernisation. *Environmental Politics* **23**:2, 224-242. [Crossref]

2768. Daniel Chico, Maite Aldaya, Insa Flachsbarth, Alberto Garrido. Virtual water trade, food security and sustainability 79-98. [Crossref]

2769. Robert Y. Shum. 2014. China, the United States, bargaining, and climate change. *International Environmental Agreements: Politics, Law and Economics* **14**:1, 83-100. [Crossref]

2778. LOUISA MAMOUNEY. 2014. SHIFTING USE OF POLICY INSTRUMENTS FOR ENVIRONMENTAL PROBLEMS: NEW SOUTH WALES, AUSTRALIA, 1979–2010. *Journal of Environmental Assessment Policy and Management* **16**:01, 1450006. [Crossref]

2785. Felix Groba. 2014. Determinants of trade with solar energy technology components: evidence on the porter hypothesis?. *Applied Economics* **46**:5, 503-526. [Crossref]

2786. Shiu-Wan Hung, Ping-Chuan Chen, Chia-Fen Chung. 2014. Gaining or losing? The social capital perspective on supply chain members’ knowledge sharing of green practices. *Technology Analysis & Strategic Management* **26**:2, 189-206. [Crossref]

2789. Francesco Testa, Tiberio Daddi, Maria Rosa De Giacomo, Fabio Iraldo, Marco Frey. 2014. The effect of Integrated Pollution Prevention and Control regulation on facility performance. *Journal of Cleaner Production* **64**, 91-97. [Crossref]

2792. Sigrun M. Wagner, Stephano Anastasiadis. Do multinational enterprises contribute to sustainable development by engaging in lobbying? The automotive industry and environmental regulations 173-202. [Crossref]

2794. Francis McGowan. 2014. Regulating innovation: European responses to shale gas development. *Environmental Politics* **23**(1), 41-58. [Crossref]

2795. Alessia Damonte. 2014. Policy tools for green growth in the EU15: a Qualitative Comparative Analysis. *Environmental Politics* **23**(1), 18-40. [Crossref]

2797. Claire Evans, Dean Stroud. Greening Steel Work: Varieties of Capitalism, the Environmental Agenda and Innovating for the Greening of the Labour Process 118-138. [Crossref]

2798. Alain Perez, Felix Larrinaga, Edward Curry. The Role of Linked Data and Semantic-Technologies for Sustainability Idea Management 306-312. [Crossref]

2799. Flavia Pereira de Carvalho. Portraying the Eco-innovative Landscape in Brazil: Determinants, Processes, and Results 117-136. [Crossref]

2800. Marlete Beatriz Maçaneiro, Sieglinde Kindl da Cunha. Contextual Factors as Drivers of Eco-innovation Strategies 137-162. [Crossref]

2801. Steven Sarasini, Jutta Hildenbrand, Birgit Brunklaus. Conceptualizing Industry Efforts to Eco-innovate Among Large Swedish Companies 163-178. [Crossref]

2802. Jong-Dae Kim, Ki-Hoon Lee. The Current Status of Korean Corporate Sustainability Management 141-166. [Crossref]

2803. José M. Moneva, Eduardo Ortas, Igor Álvarez. Exploring Sustainability in Spanish Companies 167-182. [Crossref]

2804. Mia Mahmudur Rahim. The Impact of Corporate Social Responsibility on Corporate Governance: The Rise of Standardization of CSR Principles 93-113. [Crossref]

2805. Stefan Schaltegger. Nachhaltigkeitsberichterstattung zwischen Transparenzanspruch und Management der Nachhaltigkeitsleistung 21-34. [Crossref]

2806. Mohammad Mousazadeh, S. Ali Torabi, Mir Saman Pishvae. Green and Reverse Logistics Management Under Fuzziness 607-637. [Crossref]

2807. Marcus Wagner, Eva-Maria Lutz, Nicole Weschler. Nachhaltigkeit und Innovation: Empirische Befunde und Perspektiven für das Unternehmertum 187-208. [Crossref]

2808. Volker Beckmann. Conservation, Protected Areas and Economic Development of Remote Rural Areas 209-214. [Crossref]

2809. Volker Lingnau. Controlling und Ethik 1-12. [Crossref]
2810. Peter Gerard Higgins, Mohammad Yarahmadi. Cooperation as a Driver of Development and Diffusion of Environmental Innovation 374-381. [Crossref]
2811. Hiroshi Komiyama. Finding a Way Out Through Creative Demand, I 47-70. [Crossref]
2812. Andreas Burger. Establishing and Strengthening Markets for Resource Efficient Products and Services 177-191. [Crossref]
2813. Sukhbir Sandhu, Clive Smallman, Lucie K. Ozanne, Ross Cullen. Environmental Responsiveness and Cost Savings: Effect or Driver? 55-70. [Crossref]
2814. Wan Khamaruddin B Hj Wan Musa, Sariwati Bt Mohd Shariff, Ismail B Ahmad. Innovation on Product Life Cycle Through Environmental Management Systems Standards Towards Malaysia Polypropylene Firms’ Eco-efficiency 89-95. [Crossref]
2815. Franz Wirl. 2014. Dynamic corporate social responsibility (CSR) strategies in oligopoly. OR Spectrum 36:1, 229-250. [Crossref]
2819. Marianna Epicoco, Vanessa Oltra, Maïder Saint Jean. 2014. Knowledge dynamics and sources of eco-innovation: Mapping the Green Chemistry community. Technological Forecasting and Social Change 81, 388-402. [Crossref]
2820. Chiara Franco, Giovanni Marin. 2014. The Effect of Within-Sector, Upstream and Downstream Energy Taxes on Innovation and Productivity. SSRN Electronic Journal . [Crossref]
2821. Guido Max Mantovani, Mattia Mestroni, Elisabetta Basilico. 2014. What is Worth More for the Merit of Credit? Evidence from the Credit System in the North Eastern Italian District. SSRN Electronic Journal . [Crossref]
2824. Makram El-Shagi, Claus Michelsen, Sebastian Rosenschon. 2014. Regulation, Innovation and Technology Diffusion: Evidence from Building Energy Efficiency Standards in Germany. SSRN Electronic Journal . [Crossref]
2825. Jeong-Bon Kim, Bing Li, Zhenbin Liu. 2014. Does Social Performance Influence Breadth of Ownership?. SSRN Electronic Journal . [Crossref]
2827. Max RRnge, Mikael Sandberg. 2014. Windfall Gains or Eco-Innovation? Green’ Evolution in the Swedish Innovation System. SSRN Electronic Journal . [Crossref]

2831. Thomas P. Lyon, John W. Maxwell. 2014. Self-Regulation and Regulatory Flexibility: Why Firms May Be Reluctant to Signal Green. *SSRN Electronic Journal*. [Crossref]

2832. Vladimir Gromov, Tatiana Malinina. 2014. (Perspectives of Ecologization of the Russian Tax System). *SSRN Electronic Journal*. [Crossref]

2833. Shantanu Banerjee, Xin (Simba) Chang, Kangkang Fu, George Wong. 2014. Corporate Environmental Risk and the Customer–Supplier Relationship. *SSRN Electronic Journal*. [Crossref]

2836. Phuoc Van Nguyen. 2014. Lean Manufacturing Implementation and Benefit in Production Activities. *SSRN Electronic Journal*. [Crossref]

2837. Angele Kedaitiene. Reflection Of The Economic Growth Theories In Europa 2020 Strategy. [Crossref]

2838. Hajar El Alouani, Ahmed Driouchi. The Oil and Gas Sectors, Renewable Energy, and Environmental Performance in the Arab World 172-228. [Crossref]

2839. Ting Ting Chen, Tomonori Honda, Eiji Hosoda, Kohji Hayase. 2014. The Relationship between Environmental Management and Economic Performance: A New Model with Accumulated Earnings Ratio. *Journal of Human Resource and Sustainability Studies* 02:02, 59-69. [Crossref]

2842. Amel Attour, Marc–Hubert Depret. 2014. Technologies de l’information et de la communication, soutenabilité et stratégie territoriale des villes durables : le cas des EcoCités en France. *Innovations* 44:2, 187. [Crossref]

2843. Ulrich Wassmer, Diego C. Cueto, Lorne N. Switzer. 2014. The Effect of Corporate Environmental Initiatives on Firm Value: Evidence from Fortune 500 Firms. *M@n@gement* 17:1, 1. [Crossref]

2844. Göran Roos. Manufacturing in a High Cost Environment 393-480. [Crossref]

2845. S.J.F. Roberts, P.D. Ball. 2014. Developing a Library of Sustainable Manufacturing Practices. *Procedia CIRP* 15, 159-164. [Crossref]

2847. David Cohen, Anne-Hélène Mathey, Jeffrey Biggs, Mark Boyland. Corporate Social Responsibility in the Global Forest Sector 353-376. [Crossref]

2848. Giovanni Battista Derchi, Michael Burkert, Daniel Oyon. Environmental management accounting systems: A review of the evidence and propositions for future research 197-229. [Crossref]

2854. Diane-Laure Arjaliès, Julia Mundy. 2013. The use of management control systems to manage CSR strategy: A levers of control perspective. *Management Accounting Research* 24:4, 284-300. [Crossref]

2856. Yijie Dou, Joseph Sarkis. 2013. A multiple stakeholder perspective on barriers to implementing China RoHS regulations. *Resources, Conservation and Recycling* 81, 92-104. [Crossref]

2859. T.A. Tsalis, I.E. Nikolaou, E. Grigoroudis, K.P. Tsagarakis. 2013. A framework development to evaluate the needs of SMEs in order to adopt a sustainability-balanced scorecard. *Journal of Integrative Environmental Sciences* 10:3-4, 179-197. [Crossref]

2862. E. Andrew Balas, Peter L. Elkin. 2013. Technology Transfer From Biomedical Research to Clinical Practice. *Evaluation & the Health Professions* 36:4, 505-517. [Crossref]

2868. Toshiyuki Sueyoshi, Mika Goto. 2013. DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations. *Energy Economics* 40, 370-382. [Crossref]

2873. Huang Bin, Zhao Shuang. Review of research on the industrial water environmental regulation 472-475. [Crossref]

2876. Julie Cotter, Mufah M. Najah. Corporate climate change disclosure practices and regulation: The influence of institutional investors 81-97. [Crossref]

2882. Emiko Inoue, Toshi H. Arimura, Makiko Nakano. 2013. A new insight into environmental innovation: Does the maturity of environmental management systems matter?. *Ecological Economics* 94, 156-163. [Crossref]

2883. Allan Webster, Sukanya Ayatakshi. 2013. The effect of fossil energy and other environmental taxes on profit incentives for change in an open economy: Evidence from the UK. *Energy Policy* 61, 1422-1431. [Crossref]

2885. Qian Shi, Jian Zuo, Rui Huang, Jing Huang, Stephen Pullen. 2013. Identifying the critical factors for green construction – An empirical study in China. *Habitat International* 40, 1-8. [Crossref]
2886. Jens Horbach, Klaus Rennings. 2013. Environmental innovation and employment dynamics in different technology fields – an analysis based on the German Community Innovation Survey 2009. *Journal of Cleaner Production* 57, 158-165. [Crossref]

2887. Rainer Quitzow. 2013. Towards an integrated approach to promoting environmental innovation and national competitiveness. *Innovation and Development* 3:2, 277-296. [Crossref]

2888. CLANDIA MAFFINI GOMES, FLÁVIA LUCIANE SCHERER, UIARA GONÇALVES DE MENEZES, ROBERTO DA LUZ NETO, ISAK KRUGLIANSKAS. 2013. STRATEGIES OF SUSTAINABLE MANAGEMENT AND BUSINESS PERFORMANCE: AN ANALYSIS IN INNOVATIVE COMPANIES. *International Journal of Innovation Management* 17:05, 1350026. [Crossref]

2892. Nader Abbes. Bibliographie 183-203. [Crossref]

2894. Yu-Shan Chen. 2013. Towards green loyalty: driving from green perceived value, green satisfaction, and green trust. *Sustainable Development* 21:5, 294-308. [Crossref]

2898. Simone Steinhilber, Peter Wells, Samarthia Thankappan. 2013. Socio-technical inertia: Understanding the barriers to electric vehicles. *Energy Policy* 60, 531-539. [Crossref]

2901. ERIC TWUM. 2013. BARRIERS TO THE BENEFITS, EFFICIENT AND EFFECTIVE REGULATION OF ENVIRONMENTAL FINANCIAL ASSURANCE POLICY IN DEVELOPING COUNTRIES: CASE STUDY OF GHANA. *Journal of Environmental Assessment Policy and Management* 15:03, 1350011. [Crossref]

2902. Hong Yang, Jian Zhang. 2013. Research on Driving Factors of Green Innovation in China’s Auto Parts Manufacturing Enterprises. *Advanced Materials Research* 805-806, 1685-1691. [Crossref]

2913. Yuan Ma, Hua Yin, Wei Cui. 2013. Research on Technology Innovation of Coal Industry under Environmental Regulation. *Advanced Materials Research* 734-737, 815-818. [Crossref]

2918. Elvio Accinelli Gamba, José Luis De la Fuente García. 2013. Responsabilidad social corporativa, actividades empresariales y desarrollo sustentable Modelo matemático de las decisiones en la empresa. *Contaduría y Administración* 58:3, 227-248. [Crossref]

2919. Toshiyuki Sueyoshi, Mika Goto, Margaret A. Snell. 2013. DEA environmental assessment: Measurement of damages to scale with unified efficiency under managerial disposability or environmental efficiency. *Applied Mathematical Modelling* 37:12-13, 7300-7314. [Crossref]

2925. Theodore L. Waldron, Chad Navis, Greg Fisher. 2013. Explaining Differences in Firms’ Responses to Activism. *Academy of Management Review* 38:3, 397-417. [Crossref]

2927. Sylvain Béal, Marc Deschamps, Joël Thomas Ravix, Olivier Sautel. 2013. Les effets d’une réglementation sur la concurrence et l’innovation : première analyse de la réglementation européenne REACH. *Économie & prévision* n° 197-198:1, 63-79. [Crossref]

2928. T Viaro, G Vaccaro. Exploring Green IT and Green IS 625-630. [Crossref]

2931. Xiao Chen, Alan Woodward. 2013. International trade and climate change. *International Tax and Public Finance* 20:3, 381-413. [Crossref]

2934. Annelies Goger. 2013. The making of a ‘business case’ for environmental upgrading: Sri Lanka’s ecofactories. *Geoforum* 47, 73-83. [Crossref]

2935. Chien-Chiang Lin, Yi-Wen Chen, Wen-Pin Tien, Yu-I. Lee. Green Design in Taiwan: The drivers and the role of collaboration capability in ENPD team of high-tech companies 1-10. [Crossref]

2936. HELENA FORSMAN, SERDAL TEMEL, MARJO UOTILA. 2013. TOWARDS SUSTAINABLE COMPETITIVENESS: COMPARISON OF THE SUCCESSFUL AND UNSUCCESSFUL ECO-INNOVATORS. *International Journal of Innovation Management* 17:03, 1340015. [Crossref]

2938. Chuhwan Park. 2013. The correlation among the GHG (Greenhouse Gas) emission, energy consumption and economic growth for the 6 specific regions in Korea by using Panel approaches:By Testing of the EKC(Environmental Kuznets Curve). *Journal of Environmental Policy* 12:2, 59-86. [Crossref]

2947. Sarah Yang Spencer, Carol Adams, Prem W.S. Yapa. 2013. The mediating effects of the adoption of an environmental information system on top management’s commitment and environmental performance. *Sustainability Accounting, Management and Policy Journal* 4:1, 75–102. [Crossref]

2954. Flávio de Miranda Ribeiro, Isak Kruglianskas. 2013. Improving environmental permitting through performance-based regulation: a case study of Sao Paulo State, Brazil. *Journal of Cleaner Production* 46, 15–26. [Crossref]

2955. Sergio Aguado, Roberto Alvarez, Rosario Domingo. 2013. Model of efficient and sustainable improvements in a lean production system through processes of environmental innovation. *Journal of Cleaner Production* 47, 141–148. [Crossref]

2956. Leandro Tomasín, Giancarlo Medeiros Pereira, Miriam Borchardt, Miguel Afonso Sellitto. 2013. How can the sales of green products in the Brazilian supply chain be increased?. *Journal of Cleaner Production* 47, 274–282. [Crossref]

2959. Eric MacIntosh, Nic Apostolis, Matthew Walker. 2013. Environmental responsibility: internal motives and customer expectations of a winter sport provider. *Journal of Sport & Tourism* 18:2, 99-116. [Crossref]

2966. Simone Borghesi, Valeria Costantini, Francesco Crespi, Massimiliano Mazzanti. 2013. Environmental innovation and socio-economic dynamics in institutional and policy contexts. *Journal of Evolutionary Economics* 23:2, 241-245. [Crossref]

2974. CHIH-CHING YANG. 2013. A DEA-BASED APPROACH FOR EVALUATING THE OPPORTUNITY COST OF ENVIRONMENTAL REGULATIONS. *Asia-Pacific Journal of Operational Research* 30:02, 1250049. [Crossref]

2975. John A. Mathews. The Greening of Capitalism 421-436. [Crossref]

2978. Michael Jacobs. Green Growth 197-214. [Crossref]

2985. Peter H. Egger, Christoph Jessberger, Mario Larch. 2013. Impacts of Trade and the Environment on Clustered Multilateral Environmental Agreements. The World Economy 36:3, 331-348. [Crossref]

2987. E. Cagno, E. Worrell, A. Trianni, G. Pugliese. 2013. A novel approach for barriers to industrial energy efficiency. Renewable and Sustainable Energy Reviews 19, 290-308. [Crossref]

2993. Taran Fæhn, Antonio G Gómez-Plana, Snorre Kverndokk. 2013. How can carbon policies impact unemployment?. Carbon Management 4:1, 27-29. [Crossref]

2996. Gabriel J. Costello, Ray Clarke, Brian Donnellan, John Lohan. Development of a Prototype Knowledge Discovery Portal for Energy Informatics 129-141. [Crossref]
3016. Bei Jin, Gang Li. 2013. Green economic growth from a developmental perspective. *China Finance and Economic Review* 1:1, 4. [Crossref]

3021. Tommy Lundgren, Per-Olov Marklund, Eva Samakovlis, Wenchao Zhou. 2013. Carbon Prices and Incentives for Technological Development. *SSRN Electronic Journal*. [Crossref]

3026. Tim Mennel, Teresa Romano, Sara Scatasta. 2013. Comparing FeedIn Tariffs and Renewable Obligation Certificates The Case of Repowering Wind Farms. *SSRN Electronic Journal*. [Crossref]

3028. Claudia Ghisetti, Klaus Rennings. 2013. Environmental Innovations and Profitability: How Does it Pay to Be Green?. *SSRN Electronic Journal*. [Crossref]

3029. Hao Liang, Luc Renneboog. 2013. The Foudations of Corporate Social Responsibility. *SSRN Electronic Journal*. [Crossref]

3030. liang hao, Luc Renneboog. 2013. The Foudations of Corporate Social Responsibility. *SSRN Electronic Journal*. [Crossref]

3033. Jacqueline C. K. Lam, Peter Hills. Promoting Technological Environmental Innovations 230-247. [Crossref]

3037. Dominique Bureau, Lionel Fontagné, Philippe Martin. 2013. Énergie et compétitivité. *Notes du conseil d’analyse économique* 6:6, 1. [Crossref]
3038. Marie-France Vernier. 2013. Les facteurs clés de succès de l'écoconception : leçons tirées de quelques cas d'entreprises. *Gestion* 38:3, 67. [Crossref]

3039. Julie Olivero. 2013. Les établissements industriels face aux risques environnementaux : proposition d'une taxonomie et analyse des motivations et obstacles à leur gestion. *Revue de l'organisation responsable* 8:1, 33. [Crossref]

3040. Khaled Elsayed. 2013. SOME EMPIRICAL EVIDENCE ON THE RELATIONSHIP BETWEEN INVENTORY MANAGEMENT AND SOCIAL RESPONSIBILITY. *Journal of Governance and Regulation* 2:3. [Crossref]

3041. Ammar Rashid, William Yu Chung Wang, Felix B. Tan. Value Co-Creation in Cloud Services 74-91. [Crossref]

3043. Indrė LAPINSKAITĖ. OPTIMALUS INVESTICIJŲ PASKIRSTYMAS DARNIAM ĮMONĖS VYSTYMUIŠI. [Crossref]

3045. Barbara Da Ronch, Eleonora Di Maria, Stefano Micelli. 2013. Clusters Go Green. *International Journal of Information Systems and Social Change* 4:1, 37-52. [Crossref]

3048. Eva Horváthová. 2012. The impact of environmental performance on firm performance: Short-term costs and long-term benefits?. *Ecological Economics* 84, 91-97. [Crossref]

3059. N.M. Gusmerotti, F. Testa, D. Amirante, M. Frey. 2012. The role of negotiating tools in the environmental policy mix instruments: determinants and effects of the Environmental Agreement. *Journal of Cleaner Production* **35**, 39-49. [Crossref]

3061. Giulio Cainelli, Massimiliano Mazzanti, Sandro Montresor. 2012. Environmental Innovations, Local Networks and Internationalization. *Industry & Innovation* **19**:8, 697-734. [Crossref]

3062. Yong-bo Chen. Environmental strategy and performance: A social capital perspective. [Crossref]

3069. Tanja A. Börzel, Jana Hönke, Christian R. Thauer. 2012. Does it really take the state?. *Business and Politics* **14**:3, 1-34. [Crossref]

3070. Kerul Kassel. 2012. The Circle of Inclusion: Sustainability, CSR and the Values that Drive Them. *Journal of Human Values* **18**:2, 133-146. [Crossref]

3074. Thomas Cleff, Klaus Rennings. 2012. Are there any first-mover advantages for pioneering firms?. *European Journal of Innovation Management* **15**:4, 491-513. [Crossref]

3078. Robert R. Harmon, Haluk Demirkan. Sustainable IT Services: Creating a Framework for Service Innovation 211-242. [Crossref]

3080. Jin Fan, Xiumei Guo, Dora Marinova, Yanrui Wu, Dingtao Zhao. 2012. Embedded carbon footprint of Chinese urban households: structure and changes. Journal of Cleaner Production 33, 50-59. [Crossref]

3081. Elmar Fürst, Peter Oberhofer. 2012. Greening road freight transport: evidence from an empirical project in Austria. Journal of Cleaner Production 33, 67-73. [Crossref]

3082. Donna Ramirez Harrington. 2012. Two-stage adoption of different types of pollution prevention (P2) activities. Resource and Energy Economics 34:3, 349-373. [Crossref]

3085. Yan-ping Bai. Spillover effect exerted by FDI on manufacturing industry and its effect to environment 922-927. [Crossref]

3086. Bongsoo Cho, Song, Sang-Ho. 2012. The Effects of Internal and External Motivations for Participating Green Certification on Corporate Performance. Productivity Review 26:3, 53-84. [Crossref]

3087. Béchir Ben Lahouel, David Autissier, Jean-Marie Peretti. 2012. Comment évaluer les résultats de conduite des projets de changements organisationnels dans un contexte d’agenda environnemental ?. Question(s) de management N° 0:1, 77-96. [Crossref]

3091. Mitesh Kataria. 2012. The role of preferences in disagreements over scientific hypothesis: Evidence on cognitive bias in formation of beliefs. The Journal of Socio-Economics 41:4, 364-369. [Crossref]

3093. Simone Sehnem, Murilo de Alencar Souza Oliveira, Elaine Ferreira, Adriana Marques Rossetto. 2012. Gestão e estratégia ambiental: um estudo bibliométrico sobre o interesse do tema nos periódicos acadêmicos brasileiros. REAd. Revista Eletrônica de Administração (Porto Alegre) 18:2, 468-493. [Crossref]

3102. Konstantinos Kounetas, Ioannis Mourtos, Konstantinos Tsekouras. 2012. Is energy intensity important for the productivity growth of EET adopters?. *Energy Economics* 34:4, 930-941. [Crossref]

3103. Toshiyuki Sueyoshi, Mika Goto. 2012. Returns to Scale, Damages to Scale, Marginal Rate of Transformation and Rate of Substitution in DEA Environmental Assessment. *Energy Economics* 34:4, 905-917. [Crossref]

3106. IAN SHELDON. 2012. North–South trade and standards: what can general equilibrium analysis tell us?. *World Trade Review* 11:3, 376–389. [Crossref]

3107. Ning Chang. 2012. The empirical relationship between openness and environmental pollution in China. *Journal of Environmental Planning and Management* 55:6, 783–796. [Crossref]

3111. Abraham Lioui, Zenu Sharma. 2012. Environmental corporate social responsibility and financial performance: Disentangling direct and indirect effects. *Ecological Economics* 78, 100-111. [Crossref]

3121. Désiré Avom, Gislain Stéphane Gandjon Fankem. 2012. Le développement durable constitue-t-il un élément d’attractivité territoriale ? Application aux pays de l’Afrique Centrale. *Marché et organisations* N° 16:2, 77-102. [Crossref]

3122. Eric Olszak. 2012. Localisation des activités et développement durable des territoires : quelle interactivité ?. *Marché et organisations* N° 16:2, 153-180. [Crossref]

3123. Guoyou Qi, Saixing Zeng, Xiaodong Li, Chiming Tam. 2012. Role of Internalization Process in Defining the Relationship between ISO 14001 Certification and Corporate Environmental Performance. *Corporate Social Responsibility and Environmental Management* 19:3, 129-140. [Crossref]

3128. Toshiyuki Sueyoshi, Mika Goto. 2012. DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions. *Energy Economics* 34:3, 700-713. [Crossref]

3130. Jakub Kronenberg, Tomasz Bergier. 2012. Sustainable development in a transition economy: business case studies from Poland. *Journal of Cleaner Production* 26, 18-27. [Crossref]

gas emission standards. *Transport Policy* **21**, 179-190. [Crossref]

efficiency and managerial correlates of solid waste management by Welsh SMEs using parametric and
non-parametric techniques. *Journal of the Operational Research Society* **63**:5, 653–664. [Crossref]

3134. Lota D. Tamini, Bruno Larue, Gale West. 2012. Technical and environmental efficiencies and best
management practices in agriculture. *Applied Economics* **44**:13, 1659-1672. [Crossref]

Politics* **21**:3, 486-509. [Crossref]

3136. Nicholas Howarth. 2012. Clean Energy Technology and the Role of Non-Carbon Price-Based Policy:
An Evolutionary Economics Perspective. *European Planning Studies* **20**:5, 871-891. [Crossref]

3137. Azilah Kasim, Anida Ismail. 2012. Environmentally friendly practices among restaurants: drivers and
barriers to change. *Journal of Sustainable Tourism* **20**:4, 551-570. [Crossref]

3138. A. Gentzoglanis. Emerging Technologies and regulatory hold-up: The case of shale gas in Europe
and North America 1-8. [Crossref]

Lessons from a Comparative US–EU Analysis. *Global Environmental Politics* **12**:2, 87-109. [Crossref]

and corporate performance: The mediation mechanism of green supply chain management and moderating
effect of competitive intensity. *Industrial Marketing Management* **41**:4, 621-630. [Crossref]

Journal of Innovation Economics & Management n°9:1, 83-102. [Crossref]

des objectifs technico-économiques et environnementaux au sein de projets d’éco-innovations. *Revue
deconomie industrielle* :138, 9-38. [Crossref]

patent citation analysis of glass melting and glass burners. *Environmental Economics and Policy Studies*
14:2, 189-217. [Crossref]

3146. Rodrigo Lozano. 2012. Towards better embedding sustainability into companies’ systems: an analysis
of voluntary corporate initiatives. *Journal of Cleaner Production* **25**, 14-26. [Crossref]

assessment of olive farms in Andalusia. *Land Use Policy* **29**:2, 395–406. [Crossref]

Change Mitigation. *New Political Economy* **17**:2, 179-208. [Crossref]

3150. James Kroes, Ravi Subramanian, Ramanath Subramanyam. 2012. Operational Compliance Levers,
Environmental Performance, and Firm Performance Under Cap and Trade Regulation. *Manufacturing
& Service Operations Management* **14**:2, 186-201. [Crossref]
Markus Wråke, Dallas Burtraw, Åsa Löfgren, Lars Zetterberg. 2012. What Have We Learnt from the
European Union’s Emissions Trading System?. AMBIO 41:S1, 12-22. [Crossref]

Critical Perspectives on Accounting 23:2, 93-106. [Crossref]

Indranil Bose, Raktim Pal. 2012. Do green supply chain management initiatives impact stock prices
of firms?. Decision Support Systems 52:3, 624-634. [Crossref]

Toshiyuki Sueyoshi, Mika Goto. 2012. Data envelopment analysis for environmental assessment:
Comparison between public and private ownership in petroleum industry. European Journal of
Operational Research 216:3, 668-678. [Crossref]

of performance in green supply chain management. International Journal of Production Economics
135:2, 907-916. [Crossref]

Dayna Simpson. 2012. Knowledge resources as a mediator of the relationship between recycling
pressures and environmental performance. Journal of Cleaner Production 22:1, 32-41. [Crossref]

Dan Yun Shen, Hui Ming Zhang. 2012. The Effectiveness of Environmental Regulation on Manufacturing Productivity in Jiangsu Province. Advanced Materials Research 472-475, 3286-3291. [Crossref]

Valeria Costantini, Massimiliano Mazzanti. 2012. On the green and innovative side of trade
competitiveness? The impact of environmental policies and innovation on EU exports. Research Policy
41:1, 132-153. [Crossref]

Fabrice Darrigues. 2012. Localisation géographique des firmes et environnement : entre contrainte
imposée et responsabilité incitée. Revue d’économie politique Vol. 121:5, 767-795. [Crossref]

Fernando J. Diaz Lopez, Carlos Montalvo. The Greening of the Chemical Industry: Past, Present and Challenges Ahead 35-78. [Crossref]

and the Environment 21:1, 49-59. [Crossref]

Philipp Schreck. Der Business Case for Corporate Social Responsibility 67-86. [Crossref]

Yoshinori Ito, Katsuya Nagata. Research on Environmental Innovation Strategy that intends High Performance Enterprise in Uncertain Age 290-295. [Crossref]

Francesco Ito. Waste Technological Dynamics and Policy Effects: Evidence from OECD Patent Data 179-201. [Crossref]

Marcus Wagner. The Role and Effectiveness of Environmental and Social Regulations in Creating Innovation Offsets and Enhancing Firm Competitiveness 83-95. [Crossref]

Francesco Crespi. Environmental Policy and Induced Technological Change in European Industries 143-157. [Crossref]

Giovanni Marin. Closing the Gap? Dynamic Analyses of Emission Efficiency and Sector Productivity in Europe 159-177. [Crossref]

Joël Houdet, Michel Trommetter, Jacques Weber. 2012. Understanding changes in business strategies regarding biodiversity and ecosystem services. Ecological Economics 73, 37-46. [Crossref]
3188. Francesco Testa, David Styles, Fabio Iraldo. 2012. Case study evidence that direct regulation remains
the main driver of industrial pollution avoidance and may benefit operational efficiency. *Journal of
Cleaner Production* 21:1, 1-10. [Crossref]

examination of the effect of environmental-related standards on employees’ recruitment. *Resource and
Energy Economics* 34:1, 74-92. [Crossref]

3190. Xun Cao, Aseem Prakash. 2012. Trade Competition and Environmental Regulations: Domestic
Political Constraints and Issue Visibility. *The Journal of Politics* 74:1, 66-82. [Crossref]

3191. Erika Marsillac. Measuring the Environmental Impact of a Product 123-139. [Crossref]

3192. Bernhard Truffer, Lars Coenen. 2012. Environmental Innovation and Sustainability Transitions in
Regional Studies. *Regional Studies* 46:1, 1-21. [Crossref]

from Ecosystem Change in Primary Industries Using Ecosystem-Based Business Risk Analysis Tool. *Human and Ecological Risk Assessment: An International Journal* 18:1, 47-68. [Crossref]

3194. Daniel W. Bromley. Samuels vs. Buchanan: Grasping the Purpose of the Law 137-149. [Crossref]

development for second generation biodiesel 254-280. [Crossref]

3196. Luciana Togeiro de Almeida. 2012. Economia verde: a reiteração de ideias à espera de ações. *Estudos Avançados* 26:74, 93-103. [Crossref]

ambientais em empresas paulistas processadoras de madeira. *Production* 22:1, 173-184. [Crossref]

3198. GAO Shuang, WEI Yehua Dennis, CHEN Wen. 2012. Effects of environmental regulation on the
structure optimization and performance of manufacturing industry in Wuxi City. *Journal of Lake
Sciences* 24:1, 17-26. [Crossref]

3199. Craig Mackenzie, Bill Rees, Tatiana Rodionova. 2012. The FTSE4Good Effect: The Impact of
Responsible Investment Indices on Environmental Management. *SSRN Electronic Journal*. [Crossref]

3200. Effie Kesidou, Pelin Demirel. 2012. Motivations for Organisational Eco-Innovations: Adoption of
Environmental Management Systems by UK Companies. *SSRN Electronic Journal*. [Crossref]

Agreements in Developing Countries: The Colombian Experience. *SSRN Electronic Journal*. [Crossref]

3202. Simone Borghesi, Giulio Cainelli, Massimiliano Mazzanti. 2012. Brown Sunsets and Green Dawns in
SSRN Electronic Journal. [Crossref]

Electronic Journal*. [Crossref]

3204. Jens Horbach, Klaus Rennings. 2012. Environmental Innovation and Employment Dynamics in
Different Technology Fields - An Analysis Based on the German Community Innovation Survey 2009.
SSRN Electronic Journal. [Crossref]

3205. Sulin Ba, Ling Lei Lisc, Qindong Liu, Jan Stallaert. 2012. Stock Market Reaction to Green Vehicle
Innovation. *SSRN Electronic Journal*. [Crossref]

Footprints. *SSRN Electronic Journal*. [Crossref]

Rating Announcements?. *SSRN Electronic Journal*. [Crossref]
Le cas du secteur des TIC. *Reflets et perspectives de la vie économique* 41:4, 77. [Crossref]

3229. Jean-marie Courrent. Bibliographie 143. [Crossref]

3232. Martin Perry, Martina Battisti. Chapter 6 Sustainable Business and Local Economic Development 121-147. [Crossref]

3249. Ian H. Rowlands. 2011. Ancillary impacts of energy-related climate change mitigation options in Africa’s least developed countries. *Mitigation and Adaptation Strategies for Global Change* **16**:7, 749-773. [Crossref]

3250. Natalia Ortiz-de-Mandojana, J. Alberto Aragón Correa, Javier Delgado Ceballos. 2011. La relación entre la propiedad institucional y de los directivos y el desempeño medioambiental. *Cuadernos de Economía y Dirección de la Empresa* **14**:4, 222-230. [Crossref]

3257. Indrani Roy Chowdhury, Sandwip K. Das. 2011. Environmental regulation, green R&D and the Porter hypothesis. *Indian Growth and Development Review* **4**:2, 142-152. [Crossref]

3267. DYLAN G. RASSIER, DIETRICH EARNHART. 2011. SHORT-RUN AND LONG-RUN IMPLICATIONS OF ENVIRONMENTAL REGULATION ON FINANCIAL PERFORMANCE. *Contemporary Economic Policy* 29:3, 357-373. [Crossref]

3273. Sapna A. Narula, K.M. Upadhyay. 2011. Product strategy vis-à-vis environment: are strategies of pesticide manufacturers in India sustainable?. *Social Responsibility Journal* 7:2, 282-294. [Crossref]

3276. Xiaowei Zhao, Fan Zhang. The neighborhood effects of environmental regulation and total factor productivity growth: Insights from a spatial econometric approach 1-6. [Crossref]

3277. Xiaowei Zhao, Zhigang Gao. Spatial externalities, environmental pollution and total factor productivity growth in China & #8212; Evidence from a spatial panel data set of provincial-level 440-444. [Crossref]

3279. Pedro Roberto Jacobi, Emmanuel Raufflet, Michelle Padovese de Arruda. 2011. Educação para a sustentabilidade nos cursos de Administração: reflexão sobre paradigmas e práticas. *RAM. Revista de Administração Mackenzie* 12:3, 21-50. [Crossref]

3285. Rainer Walz. 2011. Employment and structural impacts of material efficiency strategies: results from five case studies. *Journal of Cleaner Production* 19:8, 805-815. [Crossref]

3286. Sören Steger, Raimund Bleischwitz. 2011. Drivers for the use of materials across countries. *Journal of Cleaner Production* 19:8, 816-826. [Crossref]

3294. Stefano Pogutz, Valerio Micale. 2011. Sustainable consumption and production. *Society and Economy* 33:1, 29-50. [Crossref]

3295. Gustavo Inácio de Moraes, Mauricio Aguiar Serra. 2011. O modelo IS-LM-EE para economias abertas e distinções dos efeitos para as economias nacionais. *Economia e Sociedade* 20:1, 53-78. [Crossref]

3299. Leslie E. Sekerka, Derek Stimel. 2011. How durable is sustainable enterprise? Ecological sustainability meets the reality of tough economic times. *Business Horizons* 54:2, 115-124. [Crossref]

3320. Brian L. Connelly, David J. Ketchen, Stanley F. Slater. 2011. Toward a “theoretical toolbox” for sustainability research in marketing. *Journal of the Academy of Marketing Science* 39:1, 86-100. [Crossref]

3323. Marival Segarra-Oña, Angel Peiró-Sigues, Lluis Miret-Pastor, José Albors-Garrigós. Uncovering Non-obvious Relationship Between Environmental Certification and Economic Performance at the Food Industry 325-338. [Crossref]

3324. María-del-Val Segarra-Oña, Conrado Carrascosa-López, Baldomero Segura-García-del-Río. Do Companies Know Which are the Barriers and Facilitators that Enable Proactive Environmental Orientation of the Industry? 373-388. [Crossref]

3325. Paweł Pawlewski, Paul Eric Dossou. Comparison of Enterprise Integration Concepts (PLM and EA) from the Point of View Green Manufacturing 659-673. [Crossref]

3326. Rainer Walz. Competences for Green Development and Leapfrogging: The Case of Newly Industrializing Countries 127-150. [Crossref]

3327. Stefan Schaltegger. Sustainability Management Control 337-352. [Crossref]

3335. Stefan Ambec, Mark A. Cohen, Stewart Elgie, Paul Lanoie. 2011. The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?. *SSRN Electronic Journal*. [Crossref]

3338. Giulio Cainelli, Massimiliano Mazzanti, Sandro Montresor. 2011. Environmental Innovations, Local Networks and Internationalization. *SSRN Electronic Journal*. [Crossref]

3344. Peter A. Appel. 2011. Improving Corporate Environmental Performance: Encouraging Sustainable Commerce Through Regulatory and Other Governmental Action. *SSRN Electronic Journal*. [Crossref]

3352. Xiang Bi, George Deltas, Madhu Khanna. 2011. Adoption of Pollution Prevention: The Role of Information Spillover, Mandatory Regulation, and Voluntary Program Participation. *SSRN Electronic Journal*. [Crossref]

3354. Nicholas A. Ashford, Ralph P. Hall. 2011. The Importance of Regulation-Induced Innovation for Sustainable Development. *Sustainability* 3:1, 270-292. [Crossref]

3356. Carsten Gandenberger. Von der sozialen zur sozial-ökologischen Einbettung des Unternehmens 249-279. [Crossref]

3359. Françoise Quairel Lanoizelée. La Responsabilité sociale des entreprises est-elle-soluble dans la concurrence ? 129-149. [Crossref]

3360. Christophe Beaurain, Jérôme Longuépée. De conflits en coopérations : territoire et environnement industriel dans l'agglomération de Dunkerque 107-122. [Crossref]

3361. Solange Montagné. Le développement durable et le rejet de l'entreprise tertiaire, l'exemple d'ikea dans les Alpes-Maritimes 159-172. [Crossref]

3365. Daron Acemoglu. 2010. When Does Labor Scarcity Encourage Innovation?. *Journal of Political Economy* 118:6, 1037-1078. [Crossref]

3366. Daniel J. Fiorino. 2010. Sustainability as a Conceptual Focus for Public Administration. *Public Administration Review* 70, s78-s88. [Crossref]

3370. Lopin Kuo, Shihping Kevin Huang, Yen-Chun Jim Wu. 2010. Operational efficiency integrating the evaluation of environmental investment: the case of Japan. *Management Decision* 48:10, 1596-1616. [Crossref]

3376. ALEJANDRO SAMPAOLESI. 2010. Optimal pollution tax under imperfect competition and international trade: the small country case. *Environment and Development Economics* 15:5, 505-514. [Crossref]

3378. Curt H. Stiles, Craig S. Galbraith. Chapter 5 Curricula strategies in university graduate MBA programs: The demands of corporate social responsibility and sustainability 101-111. [Crossref]

3383. Cody Jones. 2010. Exploring new ways of assessing the effect of regulation on environmental management. *Journal of Cleaner Production* 18:13, 1229-1250. [Crossref]

3387. Helen M. Haugh, Alka Talwar. 2010. How Do Corporations Embed Sustainability Across the Organization?. *Academy of Management Learning & Education* 9:3, 384-396. [Crossref]

3390. Lars Coenen, Fernando J. Díaz López. 2010. Comparing systems approaches to innovation and technological change for sustainable and competitive economies: an explorative study into conceptual commonalities, differences and complementarities. *Journal of Cleaner Production* 18:12, 1149-1160. [Crossref]

3391. Jianxiang Wan. Does Porter Hypothesis Exist? - Take Major-Surveyed Industries in Jiangxi Province as an Example 1-4. [Crossref]

3392. Yujing Wang. Effect of Environmental Management Measures on International Trade and Innovation 1-4. [Crossref]
3393. Bongsuk Sung. 2010. An analysis on the relationship between the environmental regulation and the export specialization pattern in renewable energy industry. *Journal of Asia-Pacific Studies* 17:2, 103-125. [Crossref]

3396. María D. López-Gamero, José F. Molina-Azorín, Enrique Claver-Cortés. 2010. The potential of environmental regulation to change managerial perception, environmental management, competitiveness and financial performance. *Journal of Cleaner Production* 18:10-11, 963-974. [Crossref]

3399. Ashfaqul Babool, Michael Reed. 2010. The impact of environmental policy on international competitiveness in manufacturing. *Applied Economics* 42:18, 2317-2326. [Crossref]

3400. Xuanwei Cao, Ruili Li, Liuxu Xiangli. Notice of Retraction: Time strategy for environmental technology innovation: An integrated view of cognition and action 182-185. [Crossref]

3404. Breno Nunes, David Bennett. 2010. Green operations initiatives in the automotive industry. *Benchmarking: An International Journal* 17:3, 396-420. [Crossref]

3405. Caterina De Lucia, Elena Palma, Pasquale Pazienza, Vincenzo Vecchione. Foreign direct investments and environmental sustainability in Apulia region with a view to the strategic planning process in the metropolitan area of Bari, Italy 52-59. [Crossref]

3412. Pascal L. Ghazalian, Bruno Larue, Gale E. West. 2010. Best Management Practices and the Production of Good and Bad Outputs. *Canadian Journal of Agricultural Economics/Revue canadienne d’agroéconomie* 1, no-no. [Crossref]

3418. John Barry. Chapter 6 Towards a model of green political economy: From ecological modernisation to economic security 109-128. [Crossref]

3422. P. Desrochers. 2010. The environmental responsibility of business is to increase its profits (by creating value within the bounds of private property rights). *Industrial and Corporate Change* 19:1, 161-204. [Crossref]

3424. Marlen Gabriele Arnold, Kai Hockerts. 2010. The greening dutchman: Philips’ process of green flagging to drive sustainable innovations. *Business Strategy and the Environment* 14, n/a-n/a. [Crossref]

3425. Marlen Arnold. Corporate Strategies for Sustainable Innovations 217-232. [Crossref]

3426. J. R. Modapothala, B. Issac, E. Jayamani. Appraising the Corporate Sustainability Reports – Text Mining and Multi-Discriminatory Analysis 489-494. [Crossref]

3428. Brian R. Copeland. How Does Trade Affect the Environment? 206-247. [Crossref]

3429. Rainer Walz. Technological Competences in Sustainability Technologies in the BRICS Countries 281-299. [Crossref]

3430. Robert Harmon, Haluk Demirkan, Nora Auseklis, Marisa Reinoso. From Green Computing to Sustainable IT: Developing a Sustainable Service Orientation 1-10. [Crossref]
3431. Yulia Wati, Chulmo Koo. The Green IT Practices of Nokia, Samsung, Sony, and Sony Ericsson: Content Analysis Approach 1-10. [Crossref]

3434. Thomas Ervin Schneider. 2010. Is Environmental Performance a Determinant of Bond Pricing? Evidence from the U.S. Pulp and Paper and Chemical Industries. SSRN Electronic Journal . [Crossref]

3435. Patrick A. McLaughlin, Bentley Coffey. 2010. Trade Flow Consequences of the European Union’s Regionalization of Environmental Regulations. SSRN Electronic Journal . [Crossref]

3436. Ioannis Ioannou, George Serafeim. 2010. The Impact of Corporate Social Responsibility on Investment Recommendations. SSRN Electronic Journal . [Crossref]

3437. Ignazio Musu. 2010. Green Economy: Great Expectation or Big Illusion?. SSRN Electronic Journal . [Crossref]

3439. Eric R. W. Knight. 2010. The Economic Geography of Clean Tech Venture Capital. SSRN Electronic Journal . [Crossref]

3442. Valeria Costantini, Massimiliano Mazzanti. 2010. On the Green Side of Trade Competitiveness? Environmental Policies and Innovation in the EU. SSRN Electronic Journal . [Crossref]

3445. Paul Lanoie, Stefan Ambec, Mark A. Cohen, Stewart Elgie. 2010. The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?. SSRN Electronic Journal . [Crossref]

3448. Klaus Rennings, Sascha Rexhauser. 2010. Long-Term Impacts of Environmental Policy and Eco-Innovative Activities of Firms. SSRN Electronic Journal . [Crossref]

3450. Nicholas Mangee, Bruce Elmslie. 2010. Environmental Standards and Trade Volume. Modern Economy 01:02, 100-111. [Crossref]
3451. Peter L. Bond. Toward a Living Systems Framework for Unifying Technology and Knowledge Management, Organizational, Cultural and Economic Change 108-132. [Crossref]

3452. Jérôme Trotignon. 2010. La Restriction des émissions de CO2 pénalise-t-elle les exportations? Un modèle de gravité avec données de panel et variables muettes régionales. *L'Actualité économique* 86:1, 5-33. [Crossref]

3456. A.P. Barnes, J. Willock, C. Hall, L. Toma. 2009. Farmer perspectives and practices regarding water pollution control programmes in Scotland. *Agricultural Water Management* 96:12, 1715-1722. [Crossref]

3457. Véronique Saint-Ges, Marie-Claude Bélis-Bergouignan. 2009. Ways of reducing pesticides use in Bordeaux vineyards. *Journal of Cleaner Production* 17:18, 1644-1653. [Crossref]

3460. Azilah Kasim. 2009. Managerial attitudes towards environmental management among small and medium hotels in Kuala Lumpur. *Journal of Sustainable Tourism* 17:6, 709-725. [Crossref]

3461. Fabio Iraldo, Francesco Testa, Marco Frey. 2009. Is an environmental management system able to influence environmental and competitive performance? The case of the eco-management and audit scheme (EMAS) in the European union. *Journal of Cleaner Production* 17:16, 1444-1452. [Crossref]

3466. Even Fallan, Lars Fallan. 2009. Voluntarism versus regulation. *Journal of Accounting & Organizational Change* 5:4, 472-489. [Crossref]

3467. Steven Sarasini. 2009. Constituting leadership via policy: Sweden as a pioneer of climate change mitigation. *Mitigation and Adaptation Strategies for Global Change* 14:7, 635-653. [Crossref]

3501. Taran Fæhn, Annegrete Bruvoll. 2009. Richer and cleaner—At others’ expense?. *Resource and Energy Economics* 31:2, 103-122. [Crossref]

3503. Greg Filbeck, Raymond Gorman, Xin Zhao. 2009. The “Best Corporate Citizens”: Are They Good for Their Shareholders?. *Financial Review* 44:2, 239-262. [Crossref]

3528. Rainer Walz, Katrin Ostertag. 2009. Absorptive Capacities for Sustainability Technologies: Perspectives from the BRICS and China. Chinese Journal of Population Resources and Environment 7:2, 3-10. [Crossref]

3529. Jashua Rajesh Modapothala, Biju Issac. Evaluation of Corporate Environmental Reports Using Data Mining Approach 543-547. [Crossref]

3530. Qiang Li, Rui Nie. Environmental Regulation and Regional Technical Innovation: Empirical Study Based on China Provincial Panel Data 4289-4292. [Crossref]

3533. Daron Acemoglu. 2009. When Does Labor Scarcity Encourage Innovation?. SSRN Electronic Journal . [Crossref]

3535. Sabrina Adamczyk, Erik G. Hansen, Ralf Reichwald. 2009. Measuring Sustainability by Environmental Innovativeness: Results from Action Research at a Multinational Corporation in Germany. SSRN Electronic Journal . [Crossref]

3539. Matthew J. Kotchen, Stephen W. Salant. 2009. A Free Lunch in the Commons. SSRN Electronic Journal . [Crossref]

3540. Alessandro Marelli, Paola Miolo Vitali. 2009. Environmental Cost Accounting in Italy: A Research Note. SSRN Electronic Journal . [Crossref]

3543. Richard Kneller, Edward Manderson. 2009. Environmental Regulations, Outward FDI and Heterogeneous Firms: Are Countries Used as Pollution Havens?. SSRN Electronic Journal . [Crossref]

3544. Sofia Lundberg, Per-Olov Marklund, Runar Brännlund. 2009. Assessment of Green Public Procurement as a Policy Tool: Cost-Efficiency and Competition Considerations. SSRN Electronic Journal . [Crossref]

3550. Marc-Hubert Depret, Abdelillah Hamdouch. 2009. Quelles politiques de l’innovation et de l’environnement pour quelle dynamique d’innovation environnementale ?. *Innovations* 29:1, 127. [Crossref]

3551. Annick Castiaux. 2009. Responsabilité d’entreprise et innovation : entre exploration et exploitation. *Reflets et perspectives de la vie économique* XLVIII:4, 37. [Crossref]

3553. Jarmila Zimmermannová. 2009. The impact of taxation of electricity, natural gas and solid fuels on sectors in nace in the Czech Republic. *Politická ekonomie* 57:2, 213-231. [Crossref]

3555. Bruce Wayne Clemens, Maria Papadakis. 2008. Environmental management and strategy in the face of regulatory intensity: radioactive contamination in the US steel industry. *Business Strategy and the Environment* 17:8, 480-492. [Crossref]

3556. Leena Lankoski. 2008. Corporate responsibility activities and economic performance: a theory of why and how they are connected. *Business Strategy and the Environment* 17:8, 536-547. [Crossref]

3560. Francisca Castilla Polo, Dolores Gallardo Vázquez. 2008. Social information within the intellectual capital report. *Journal of International Management* 14:4, 353-363. [Crossref]

3562. Ans Kolk, Jonatan Pinkse. 2008. A perspective on multinational enterprises and climate change: Learning from "an inconvenient truth"?. *Journal of International Business Studies* 39:8, 1359-1378. [Crossref]

3573. François Salanié, Nicolas Treich. 2008. Entreprises socialement responsables : quel sens, quel avenir ?. *Horizons stratégiques* n° 7:1, 182-195. [Crossref]

3575. Mark Smith, Jo Crotry. 2008. Environmental regulation and innovation driving ecological design in the UK automotive industry. *Business Strategy and the Environment* 17:6, 341-349. [Crossref]

3579. Ursula Triebwetter, Johann Wackerbauer. 2008. Integrated environmental product innovation in the region of Munich and its impact on company competitiveness. *Journal of Cleaner Production* 16:14, 1484-1493. [Crossref]

3580. Jesse Yamaguchi, G. Cornelis van Kooten. 2008. Do higher financial returns lead to better environmental performance in North America's forest products sector?. *Canadian Journal of Forest Research* 38:9, 2515-2525. [Crossref]

3584. Royce D. Burnett, Don R. Hansen. 2008. Ecoefficiency: Defining a role for environmental cost management. *Accounting, Organizations and Society* **33**:6, 551-581. [Crossref]

3625. Maïder Saint Jean. 2008. Polluting emissions standards and clean technology trajectories under competitive selection and supply chain pressure. *Journal of Cleaner Production* **16**:1, S113–S123. [Crossref]

3626. Per Mickwitz, Heli Hyvättinen, Paula Kivimaa. 2008. The role of policy instruments in the innovation and diffusion of environmentally friendlier technologies: popular claims versus case study experiences. *Journal of Cleaner Production* **16**:1, S162–S170. [Crossref]

3630. Arik Levinson. Pollution Haven Hypothesis 1–5. [Crossref]

3631. Robert N. Stavins. Environmental Haven Economics 1–14. [Crossref]

3632. Bernard Jullien. 2008. A framework to enrich the scientific, political and managerial understanding of sustainable development issues for the automotive industry: the GERPISA’s ‘tradeoffs and synergies’ approach. *International Journal of Automotive Technology and Management* **8**:4, 469. [Crossref]

3645. Totti Könnölä, Gregory C. Unruh. 2007. Really changing the course: the limitations of environmental management systems for innovation. *Business Strategy and the Environment* **16**:8, 525-537. [Crossref]

3649. Jeffrey Unerman, Brendan O’Dwyer. 2007. The business case for regulation of corporate social responsibility and accountability. *Accounting Forum* **31**:4, 332-353. [Crossref]

3650. M.G. Kassolis. 2007. The diffusion of environmental management in Greece through rationalist approaches: driver or product of globalisation?. *Journal of Cleaner Production* **15**:18, 1886-1893. [Crossref]

3651. Bryan W. Husted, David B. Allen. 2007. Strategic Corporate Social Responsibility and Value Creation among Large Firms. *Long Range Planning* **40**:6, 594-610. [Crossref]

3652. Thomas Hutzschenreuter, Torben Pedersen, Henk W Volberda. 2007. The role of path dependency and managerial intentionality: a perspective on international business research. *Journal of International Business Studies* **38**:7, 1055-1068. [Crossref]

3653. Luca Berchicci, Andrew King. 2007. Postcards from the Edge. *The Academy of Management Annals* **1**:1, 513-547. [Crossref]

3655. Luca Berchicci, Andrew King. 2007. Postcards from the Edge. *Academy of Management Annals* **1**:1, 513-547. [Crossref]

3656. Seong-Gin Moon, Peter deLeon. 2007. Contexts and Corporate Voluntary Environmental Behaviors. *Organization & Environment* **20**:4, 480-496. [Crossref]

3660. Margaret Peteraf, Randal Reed. 2007. Managerial discretion and internal alignment under regulatory constraints and change. *Strategic Management Journal* **28**:11, 1089-1112. [Crossref]

3665. Thomas P. Lyon, John W. Maxwell. 2007. Environmental Public Voluntary Programs Reconsidered. Policy Studies Journal 35:4, 723-750. [Crossref]

3670. Shih-Ying Wu, Po-Young Chu, Tzu-Yar Liu. 2007. DETERMINANTS OF A FIRM’S ISO 14001 CERTIFICATION: AN EMPIRICAL STUDY OF TAIWAN. Pacific Economic Review 12:4, 467-487. [Crossref]

3671. Masaru Yarime. 2007. Promoting Green Innovation or Prolonging the Existing Technology. Journal of Industrial Ecology 11:4, 117-139. [Crossref]

3673. Nancy Loman Scanlon. 2007. An analysis and assessment of environmental operating practices in hotel and resort properties. International Journal of Hospitality Management 26:3, 711-723. [Crossref]

3680. Biagio F. Giannetti, Flávio A. Barrella, Silvia H. Bonilla, Cecilia M. Villas Boas de Almeida. 2007. Aplicações do diagrama emergético triangular na tomada de decisão ecoeficiente. Production 17:2, 246-262. [Crossref]

3681. Aseem Prakash. 2007. Corporate Environmentalism: Problems and Prospects. Global Environmental Politics 7:3, 130-135. [Crossref]

3683. Cristian Cardenas-Lailhacar. Industrial Energy Management 872-882. [Crossref]

3692. Gilles Grolleau, Naoufel Mzoughi, Alban Thomas. 2007. What drives agrifood firms to register for an Environmental Management System?. *European Review of Agricultural Economics* **34**:2, 233-255. [Crossref]

3693. Alistair Ulph, David Ulph. 2007. Climate change—environmental and technology policies in a strategic context. *Environmental and Resource Economics* **37**:1, 159-180. [Crossref]

3695. Eva Regnier, Craig Tovey. 2007. Time horizons of environmental versus non-environmental costs: evidence from US tort lawsuits. *Business Strategy and the Environment* **16**:4, 249-265. [Crossref]

3703. Jorge Juan Soto Delgado, Alessandra Magrini, Rogério Valle. 2007. The Brazilian chemical industry and sustainable development. *Environmental Progress* **26**:1, 59-70. [Crossref]
3704. André Grimaud, Frederic Tournemaine. 2007. Why can an environmental policy tax promote growth through the channel of education?. *Ecological Economics* **62**:1, 27-36. [Crossref]

3708. Paula Kivimaa. 2007. The determinants of environmental innovation: the impacts of environmental policies on the Nordic pulp, paper and packaging industries. *European Environment* **17**:2, 92-105. [Crossref]

3710. L. Venkatachalam. 2007. Environmental economics and ecological economics: Where they can converge?. *Ecological Economics* **61**:2-3, 550-558. [Crossref]

3714. V. Hontou, D. Diakoulaki, L. Papagiannakis. 2007. A multicriterion classification approach for assessing the impact of environmental policies on the competitiveness of firms. *Corporate Social Responsibility and Environmental Management* **14**:1, 28-41. [Crossref]

3715. Dabo Guan, Klaus Hubacek. 2007. Assessment of regional trade and virtual water flows in China. *Ecological Economics* **61**:1, 159-170. [Crossref]

3718. Ulrich Oberndorfer, Klaus Rennings. 2007. Costs and competitiveness effects of the European Union emissions trading scheme. *European Environment* **17**:1, 1-17. [Crossref]

3719. Rob Hart. Can Environmental Regulations Boost Growth? 53-70. [Crossref]

3721. Richard L. Revesz, Robert N. Stavins. Chapter 8 Environmental Law 499-589. [Crossref]

3722. Y. Sumiani, Y. Haslinda, G. Lehman. 2007. Environmental reporting in a developing country: a case study on status and implementation in Malaysia. *Journal of Cleaner Production* **15**:10, 895-901. [Crossref]

3723. Lena Croft, Shige Makino. The Road to the Kyoto Protocol: A Harmonious Case of Euro-Chinese Corporate Environmental Behaviour 50-64. [Crossref]
3724. Yoshifumi Fujii. Historical Dynamic Interactions between Regulatory Policy and Pipe-end Technology Development in Japan: Case Studies of Developing Air Pollution Control Technology 48-68. [Crossref]

3726. Christoph Heinzel, Ralph Winkler. 2007. The Role of Environmental and Technology Policies in the Transition to a Low-Carbon Energy Industry. *SSRN Electronic Journal*. [Crossref]

3728. Julien Labonne, Nick Johnstone. 2007. Environmental Policy and Economies of Scope in Facility-Level Environmental Practices. *SSRN Electronic Journal*. [Crossref]

3736. Stefan Ambec, Philippe Barla. 2007. Survol des fondements théoriques de l’hypothèse de Porter. *L’Actualité économique* 83:3, 399-413. [Crossref]

3737. Vlasis Oikonomou, Martin Patel, Ernst Worrell. 2006. Climate policy: Bucket or drainer?. *Energy Policy* 34:18, 3656-3668. [Crossref]

3741. Rachel M. Hilliard. 2006. The role of organizational capabilities in cleaner technology adoption: an analysis of the response of the pharmaceutical manufacturing sector in Ireland to IPC licensing regulations. *European Environment* 16:6, 336-349. [Crossref]

3743. Jie He. 2006. Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces. Ecological Economics 60:1, 228-245. [Crossref]
3744. Ian Sue Wing. 2006. Representing induced technological change in models for climate policy analysis. Energy Economics 28:5-6, 539-562. [Crossref]
3745. Michael Benarroch, Rolf Weder. 2006. Intra-industry trade in intermediate products, pollution and internationally increasing returns. Journal of Environmental Economics and Management 52:3, 675-689. [Crossref]
3749. Mohamed M. Mostafa. 2006. Antecedents of Egyptian Consumers' Green Purchase Intentions. Journal of International Consumer Marketing 19:2, 97-126. [Crossref]
3750. Kjetil Telle. 2006. “It Pays to be Green” – A Premature Conclusion?. Environmental and Resource Economics 35:3, 195-220. [Crossref]
3751. Angelo Nicolaides. 2006. The implementation of environmental management towards sustainable universities and education for sustainable development as an ethical imperative. International Journal of Sustainability in Higher Education 7:4, 414-424. [Crossref]
3753. Ian Sheldon. 2006. Trade and Environmental Policy: A Race to the Bottom?. Journal of Agricultural Economics 57:3, 365-392. [Crossref]
3756. Lynn Mainwaring, Richard Jones, David Blackaby. 2006. Devolution, sustainability and GDP convergence: Is the Welsh agenda achievable?. Regional Studies 40:6, 679-689. [Crossref]
3758. Henrik Hammar, Åsa Löfgren. 2006. The variability of environmental protection expenditures between sectors in Sweden. European Environment 16:4, 246-257. [Crossref]

3763. Asli Suder. Green Productivity and Management 1157-1165. [Crossref]

3764. Dawood Abugharbieh, Robert Harmon. Enabling Ecologically Sustainable Global Development for the Semiconductor Capital Equipment Industry 1171-1179. [Crossref]

3770. J. Peter Clinch, Louise Dunne, Simon Dressner. 2006. Environmental and wider implications of political impediments to environmental tax reform. *Energy Policy* 34:8, 960-970. [Crossref]

3779. CHRISTOPHER WRIGHT, ALEXIS RWABIZAMBUGA. 2006. Institutional Pressures, Corporate Reputation, and Voluntary Codes of Conduct: An Examination of the Equator Principles. *Business and Society Review* 111:1, 89-117. [Crossref]

3781. Pontus Cerin. 2006. Bringing economic opportunity into line with environmental influence: A discussion on the Coase theorem and the Porter and van der Linde hypothesis. *Ecological Economics* 56:2, 209-225. [Crossref]

3785. Konstantinos I. Evangelinos, Mami Oku. 2006. Corporate environmental management and regulation of mining operations in the Cyclades, Greece. *Journal of Cleaner Production* 14:3-4, 262-270. [Crossref]

3786. Lars Koch, Nicholas A. Ashford. 2006. Rethinking the role of information in chemicals policy: implications for TSCA and REACH. *Journal of Cleaner Production* 14:1, 31-46. [Crossref]

3790. Jens Horbach. 2006. Determinants of Environmental Innovation - New Evidence from German Panel Data Sources. *SSRN Electronic Journal* . [Crossref]

3791. Massimiliano Mazzanti, Roberto Zoboli. 2006. Examining the Factors Influencing Environmental Innovations. *SSRN Electronic Journal* . [Crossref]

3796. Peter Clarkson, Yue Li, Gordon D. Richardson, Florin P. Vasvari. 2006. Does it Really Pay to Be Green? Determinants and Consequences of Proactive Environmental Strategies. *SSRN Electronic Journal* . [Crossref]

3797. Koji SHIMADA. 2006. *Journal of The Surface Finishing Society of Japan* 57:12, 809-812. [Crossref]

3798. Sylvie Faucheux, Christelle Hue, Isabelle Nicolai. 2006. L’éco-innovation : une opportunité pour l’avenir du développement durable ?. *Les ateliers de l’éthique* 1:2, 41-56. [Crossref]

3800. DAVID HITCHENS, SAMARTHIA THANKAPPAN, MARY TRAINOR, JENS CLAUSEN, BRUNA DE MARCHI. 2005. ENVIRONMENTAL PERFORMANCE, COMPETITIVENESS AND MANAGEMENT OF SMALL BUSINESSES IN EUROPE. *Tijdschrift voor Economische en Sociale Geografie* 96:5, 541-557. [Crossref]

3802. HAKAN MIHCI, SELIM CAGATAY, ONUR KOSKA. 2005. THE IMPACT OF ENVIRONMENTAL STRINGENCY ON THE FOREIGN DIRECT INVESTMENTS OF THE OECD COUNTRIES. *Journal of Environmental Assessment Policy and Management* 07:04, 679-704. [Crossref]

3807. Matthew Clark. 2005. Corporate environmental behavior research: informing environmental policy. *Structural Change and Economic Dynamics* 16:3, 422-431. [Crossref]

3811. Clare D'Souza, Mehdi Taghian. 2005. Green advertising effects on attitude and choice of advertising themes. *Asia Pacific Journal of Marketing and Logistics* 17:3, 51-66. [Crossref]

3816. James T. Hamilton. Regulation through Revelation 21, . [Crossref]

3822. Carolyn Fischer. Technical innovation and design choices for emissions trading and other climate policies 37-52. [Crossref]
3830. Ursula Triebswetter, David Hitchens. 2005. The impact of environmental regulation on competitiveness in the German manufacturing industry—a comparison with other countries of the European Union. *Journal of Cleaner Production* 13:7, 733-745. [Crossref]
3834. Vanessa Oltra, Maider Saint Jean †. 2005. The dynamics of environmental innovations: three stylised trajectories of clean technology. *Economics of Innovation and New Technology* 14:3, 189-212. [Crossref]
3835. Flávio A. Barrella, Cecilia M. Villas Boas de Almeida, Biagio F. Giannetti. 2005. Ferramenta para tomada de decisão considerando a interação dos sistemas de produção e o meio ambiente. *Production* 15:1, 87-101. [Crossref]

3848. Anastasios Xepapadeas. Chapter 23 Economic growth and the environment 1219-1271. [Crossref]

3849. William A. Pizer, Raymond Kopp. Chapter 25 Calculating the Costs of Environmental Regulation 1307-1351. [Crossref]

3850. Michael Rauscher. Chapter 27 International Trade, Foreign Investment, and the Environment 1403-1456. [Crossref]

3868. Murat Mirata. 2004. Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges. Journal of Cleaner Production 12:8-10, 967-983. [Crossref]

3879. Rachel Hilliard. 2004. Conflicting Views: Neoclassical, Porterian, and Evolutionary Approaches to the Analysis of the Environmental Regulation of Industrial Activity. Journal of Economic Issues 38:2, 509-517. [Crossref]

3881. Michael Peters *, R. Kerry Turner. 2004. SME environmental attitudes and participation in local-scale voluntary initiatives: some practical applications. *Journal of Environmental Planning and Management* 47:3, 449-473. [Crossref]

3893. Anna Montini, Roberto Zoboli. Environmental impact and innovation in industrial districts 272-315. [Crossref]

3894. Peggy A Cloninger. 2004. The effect of service intangibility on revenue from foreign markets. *Journal of International Management* 10:1, 125-146. [Crossref]

3897. Manuela Sarmento, Diamantino Durao, Manuela Duarte. Study of environmental sustainability: the case of Portuguese polluting industries 151-160. [Crossref]

3898. Sime Curkovic. The factors which affect the decision to attain ISO 14000 161-170. [Crossref]

3910. Rosana Icassatti Corazza. 2003. Gestão ambiental e mudanças da estrutura organizacional. *RAE eletrônica* 2:2. [Crossref]

3912. Marc Chiappero, Martine Meyer, Vinicius De Oliveira. Corporate Responsibility: Example of Local Environment Public–Private Partnership Project. [Crossref]

3917. GEORGE I. KASSINIS, ANDREAS C. SOTERIOU. 2003. GREENING THE SERVICE PROFIT CHAIN: THE IMPACT OF ENVIRONMENTAL MANAGEMENT PRACTICES. *Production and Operations Management* 12:3, 386-403. [Crossref]

3918. FRITS K. PIL, SANDRA ROTHENBERG. 2003. ENVIRONMENTAL PERFORMANCE AS A DRIVER OF SUPERIOR QUALITY. *Production and Operations Management* 12:3, 404-415. [Crossref]

3923. IAN WILLS. 2003. INFORMATIONAL BARRIERS TO POLLUTION REDUCTION IN SMALL BUSINESSES. *Economic Papers: A journal of applied economics and policy* **22**:2, 84–94. [Crossref]

3938. Adam B. Jaffe, Richard G. Newell, Robert N. Stavins. Technological change and the Environment 461–516. [Crossref]

3940. Carolyn Fischer. 2003. Climate change policy choices and technical innovation. Minerals & Energy -
Raw Materials Report 18:2, 7-15. [Crossref]
3941. Andreas Polk. 2003. Lobbying Activities of Multinational Firms. SSRN Electronic Journal . [Crossref]
Journal . [Crossref]
3943. Giovanni Cespa, Giacinta Cestone. 2003. Stakeholder Activism, Managerial Entrenchment, and the
Congruence of Interests between Shareholders and Stakeholders. SSRN Electronic Journal . [Crossref]
Empirical Evidence from Indonesian Manufacturing Plants. SSRN Electronic Journal . [Crossref]
3945. Sulaiman A. Al-Tuwaijri, Theodore E. Christensen, K.E. Hughes. 2003. The Relations Among
Environmental Disclosure, Environmental Performance, and Economic Performance: A Simultaneous
Equations Approach. SSRN Electronic Journal . [Crossref]
Innovation and Environmental Economics. SSRN Electronic Journal . [Crossref]
Electronic Journal . [Crossref]
Hypothesis and the Composition of Capital: Effects of Learning and Technological Progress. SSRN
Electronic Journal . [Crossref]
73. [Crossref]
3950. J. Emil Morhardt, Sarah Baird, Kelly Freeman. 2002. Scoring corporate environmental and
sustainability reports using GRI 2000, ISO 14031 and other criteria. Corporate Social Responsibility and
Environmental Management 9:4, 215-233. [Crossref]
Ecological Economics 43:2-3, 105-126. [Crossref]
from the 1970 and 1977 Clean Air Act Amendments and the Census of Manufactures. Journal of
Political Economy 110:6, 1175-1219. [Crossref]
3953. Dave Allen, Diana Bauer, Bert Bras, Tim Gutowski, Cindy Murphy, Tom Piwonka, Paul Sheng, John
Sutherland, Deborah Thurston, Egon Wolff. 2002. Environmentally Benign Manufacturing: Trends
[Crosrey]
[Crosrey]
The Sociological Review 50:4, 543-569. [Crossref]
The Sociological Review 50:4, 543-569. [Crossref]
3957. H. Baumann, F. Boons, A. Bragd. 2002. Mapping the green product development field: engineering,
policy and business perspectives. Journal of Cleaner Production 10:5, 409-425. [Crossref]
for Comparative Analysis of Alternatives: Competing or Complementary Perspectives?. Risk Analysis
22:5, 833-851. [Crossref]

3966. MIKAEL SKOU ANDERSEN. 2002. Ecological Modernization or Subversion?. *American Behavioral Scientist* 45:9, 1394-1416. [Crossref]

3969. Peter Helby. 2002. Environmental agreements at European Community level—reflections based on member state experience. *Journal of Cleaner Production* 10:2, 183-193. [Crossref]

3973. Steve New, Ken Green, Barbara Morton. 2002. An analysis of private versus public sector responses to the environmental challenges of the supply chain. *Journal of Public Procurement* 2:1, 93-105. [Crossref]

3975. A. Myrick Freeman III. 2002. Environmental Policy Since Earth Day I: What Have We Gained?. *Journal of Economic Perspectives* 16:1, 125-146. [Abstract] [View PDF article] [PDF with links]

3979. Luciana Togeiro. Harmonization of Environmental Regulations: Risks and Opportunities for Developing Countries 143-159. [Crossref]

3989. George I. Kassinis. 2001. Location, Networks and Firm Environmental Management Practices. *Journal of Environmental Planning and Management* **44**:6, 815-832. [Crossref]

3995. Sandra Rothenberg, Frits K. Pil, James Maxwell. 2001. LEAN, GREEN, AND THE QUEST FOR SUPERIOR ENVIRONMENTAL PERFORMANCE. *Production and Operations Management* **10**:3, 228-243. [Crossref]

3996. Andrew A. King, Michael J. Lenox. 2001. LEAN AND GREEN? AN EMPIRICAL EXAMINATION OF THE RELATIONSHIP BETWEEN LEAN PRODUCTION AND ENVIRONMENTAL PERFORMANCE. *Production and Operations Management* **10**:3, 244-256. [Crossref]

4006. Bruce Paton. 2001. Efficiency gains within firms under voluntary environmental initiatives. *Journal of Cleaner Production* 9:2, 167-178. [Crossref]

4010. Ellen Wall, Alfons Weersink, Clarence Swanton. 2001. Agriculture and ISO 14000. *Food Policy* 26:1, 35-48. [Crossref]

4014. Paulo J. Partidário. Innovation Towards Environmental Sustainability in Industry 229-264. [Crossref]

4015. Amt Meyer. Literaturverzeichnis 283-299. [Crossref]

4016. Winfried Ruigrok. Industrial Complexes as the Centres of Gravity for Green Industrial Restructuring 123-138. [Crossref]

4018. R.J. Orssatto. Environmental Challenges in Organizations 4590-4592. [Crossref]
4019. Morris Altman. 2001. When green isn’t mean: economic theory and the heuristics of the impact of environmental regulations on competitiveness and opportunity cost. *Ecological Economics* 36:1, 31-44. [Crossref]

4020. Kozo Horiuchi, Masao Nakamura. Environmental Issues and Japanese Firms 364-384. [Crossref]

4024. Mark Jaccard. Sustainable Fossil Fuels 64, . [Crossref]

4031. Alan Randall, Michael A. Taylor. 2000. Incentive-Based Solutions to Agricultural Environmental Problems: Recent Developments in Theory and Practice. *Journal of Agricultural and Applied Economics* 32:2, 221-234. [Crossref]

4047. John A. “Skip” Laitner, Stephen J. De Canio, Irene Peters. Incorporating Behavioural, Social, and Organizational Phenomena in the Assessment of Climate Change Mitigation Options 1-64. [Crossref]

4048. Vicki Norberg-Bohm. Technology Commercialization and Environmental Regulation: Lessons from the U.S. Energy Sector 193-219. [Crossref]

4050. René Kemp, Keith Smith, Gerhard Becher. How Should We Study the Relationship between Environmental Regulation and Innovation? 43-66. [Crossref]

4051. Nicholas A. Ashford. An Innovation-Based Strategy for a Sustainable Environment 67-107. [Crossref]

4052. Sylvie Faucheux. Environmental Policy and Technological Change: Towards Deliberative Governance 153-171. [Crossref]

4053. Edwin Rühli. Strategie ist tot 73-90. [Crossref]

4054. Philippe Crabbé. Discourse of A “New Alliance” Between Neo-Classical Environmental Economics and other Environmental Narratives 419-464. [Crossref]

4055. Raman Letchumanan, Fumio Kodama. 2000. Reconciling the conflict between the ‘pollution-haven’ hypothesis and an emerging trajectory of international technology transfer. *Research Policy* 29:1, 59-79. [Crossref]

4056. Jim Slater, Isabel Tirado Angel. 2000. The Impact and Implications of Environmentally Linked Strategies on Competitive Advantage. *Journal of Business Research* 47:1, 75-89. [Crossref]

4057. Xinpeng Xu. 2000. International trade and environmental policy: how effective is ‘eco-dumping’?. *Economic Modelling* 17:1, 71-90. [Crossref]

4058. C. Green. 2000. If only life were that simple; optimism and pessimism in economics. *Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere* 25:3, 205-212. [Crossref]

4059. Marco Verweij. Who has Washed the River Rhine? 109-151. [Crossref]

4060. DEBORAH L. THURSTON, JORGE ALVARADO, DONNA MANGUN, WILLIAM F. HOFFMAN III. 2000. COST, QUALITY, AND ENVIRONMENTAL TRADEOFFS FOR PRINTED CIRCUIT BOARD ASSEMBLY. *The Engineering Economist* 45:3, 206-231. [Crossref]

4112. Paul Lanoie, Benoît Laplante, Maité Roy. 1998. Can capital markets create incentives for pollution control?. *Ecological Economics* 26:1, 31-41. [Crossref]

4120. Jürgen Blażejczak. Nachhaltigkeit, Wachstum und Beschäftigung 163-179. [Crossref]

4121. Paul Ekins. Can a Market Economy Produce Industrial Innovations that Lead to Environmental Sustainability? 35-66. [Crossref]

4122. Sjak Smulders. Technological change, economic growth and sustainability 39-65. [Crossref]
4124. Susmita Dasgupta, Benoît Laplante, Nlandu Mamingi. 1998. Pollution and Capital Markets in Developing Countries. *SSRN Electronic Journal*. [Crossref]
4136. STEPHEN J. DeCANIO. 1997. ECONOMIC MODELING AND THE FALSE TRADEOFF BETWEEN ENVIRONMENTAL PROTECTION AND ECONOMIC GROWTH. *Contemporary Economic Policy* 15:4, 10-27. [Crossref]
4137. Cutler J Cleveland, Matthias Ruth. 1997. When, where, and by how much do biophysical limits constrain the economic process?. *Ecological Economics* 22:3, 203-223. [Crossref]
4142. Gebhard Kirchgässner, Georg Müller-Fürstenberger. Environmental Policy in Switzerland: Methods, Results, Problems and Challenges 184-213. [Crossref]

4148. Ottmar Edenhofer. Das Management Globaler Allmenden 390-419. [Crossref]

4150. Onno Kuik, Harmen Verbruggen. The Kyoto Regime, Changing Patterns of International Trade and Carbon Leakage 239–257. [Crossref]

4151. Thomas Roediger-Schluga. The Stringency of Environmental Regulation and the ‘Porter Hypothesis’ 123-147. [Crossref]

4152. Chad P. Bown, Rachel McCulloch. Environmental Issues 1734-1767. [Crossref]

4153. Charles Pearson. Labor Standards 1768-1785. [Crossref]

4154. H.T.A. Bressers, T.J.N.M. Bruijn. Environmental Voluntary Agreements in the Dutch Context 261–281. [Crossref]

4155. Jens Horbach. Methodological Aspects of an Indicator System for Sustainable Innovation 1-19. [Crossref]

4156. Marian Beise, Klaus Rennings. Indicators for Lead Markets of Environmental Innovations 71-94. [Crossref]

4157. Bernd Hansjürgens, Ralf Nordbeck. Einführung 3-16. [Crossref]

4158. Ralf Nordbeck. Auf der Suche nach dem innovationsfördernden Politikmuster für die neue europäische Chemikalienpolitik 45-83. [Crossref]

4159. Ralf Nordbeck, Michael Faust. Chemikalienregulierung und Innovationen — REACH im Lichte theorischer Ansätze und empirischer Wirkungsanalysen 169-210. [Crossref]

4160. Torsten Frohwein. Die Porter-Hypothese im Lichte der Neuordnung europäischer Chemikalienregulierung 211-240. [Crossref]

4161. Lars Koch. Kooperative Umweltpolitik: Theoretische Einordnung und empirische Fallstudien 95-210. [Crossref]

4162. Adarsh Varma. UK’s climate change levy and emissions trading scheme: implications for businesses’ productivity and economic efficiency 313-326. [Crossref]

4163. Paul Ekins. Analytical Tools for the Environment–Economy Interaction 177-205. [Crossref]

4164. Arnab K. Basu, Nancy H. Chau, Ulrike Grote. Eco-labeling and Strategic Rivalry in Export Markets 111-132. [Crossref]

4165. Marcus Wagner. Der Einfluss von Umweltmanagementsystemen auf Umweltinnovationsaktivitäten in Unternehmen: Empirische Evidenz und Schlussfolgerungen für Managementinstrumente 433-450. [Crossref]

4166. Nikos Vafeas, Vasoulla Nikolaou. The association between corporate environmental and financial performance 195-214. [Crossref]

4167. Sarianna M Lundan. MULTINATIONALS, ENVIRONMENT AND GLOBAL COMPETITION: A CONCEPTUAL FRAMEWORK 1-22. [Crossref]
4168. Sarianna M Lundan. MULTINATIONALS, NGOs AND REGULATION: GREENPEACE AND THE GLOBAL PHASE-OUT OF CHLORINE BLEACHING 147-170. [Crossref]

4169. Ans Kolk, David Levy. MULTINATIONALS AND GLOBAL CLIMATE CHANGE: ISSUES FOR THE AUTOMOTIVE AND OIL INDUSTRIES 171-193. [Crossref]

4170. Alan S. Dunk. Financial and Non-Financial Performance: The Influence of Quality of Information System Information, Corporate Environmental Integration, Product Innovation, and Product Quality 91-114. [Crossref]

4171. Stephen J. DeCanio, William E. Watkins, Glenn Mitchell, Keyvan Amir-Atefi, Catherine Dibble. Complexity in organizations: Consequences for climate policy analysis 149-174. [Crossref]

4172. H.-J. Ewers, M. Schatz, G. Fleischer, J. Dose. Disassembly factories: economic and environmental options 447-452. [Crossref]

4173. M. Atlas. Waste not, want not?: the relationship between manufacturers' adoption of innovative workplace management and pollution prevention practices 154-157. [Crossref]

4174. Models for Measuring and Reporting of Green Performance 114-139. [Crossref]

4175. Jacqueline C. K. Lam, Peter Hills. Promoting Technological Environmental Innovations 56-73. [Crossref]

4176. Yulia Wati, Chulmo Koo. An Introduction to the Green IT Balanced Scorecard as a Strategic IT Management System 126-152. [Crossref]

4177. Yulia Wati, Chulmo Koo. A New Recommendation for Green IT Strategies 153-175. [Crossref]

4178. Peter L. Bond. Toward a Living Systems Framework for Unifying Technology and Knowledge Management, Organizational, Cultural and Economic Change 2486-2510. [Crossref]

4179. Bernard Pecqueur, Bertrand Zuindeau. Chapitre 3. Espace, territoire, développement durable 49-58. [Crossref]